Fully-Discrete Provably Lyapunov Consistent Discretizations for Convection-Diffusion-Reaction PDE Systems
Rasha Al Jahdali , David C. Del Rey Fernández , Lisandro Dalcin , Matteo Parsani
Communications on Applied Mathematics and Computation ›› : 1 -49.
Fully-Discrete Provably Lyapunov Consistent Discretizations for Convection-Diffusion-Reaction PDE Systems
Convection-diffusion-reaction equations are a class of second-order partial differential equations (PDEs) widely used to model phenomena involving the change of concentration/population of one or more substances/species distributed in space. Understanding and preserving their stability properties in numerical simulations is crucial for accurate predictions, system analysis, and decision-making. This work focuses on the development of a comprehensive numerical framework for a class of convection-diffusion-reaction systems with a dissipative Lyapunov (or entropy or free energy) functional,
Convection-diffusion-reaction equations / Lyapunov functionals / Summation-by-parts (SBP) operators / Relaxation Runge-Kutta schemes / Fully discrete Lyapunov-consistent discretizations / 93D05 / 65L06 / 35K57 / 65N12 / 65N35 / 92D30
| [1] |
Al Jahdali, R., Dalcin, L., Parsani, M.: On the performance of relaxation and adaptive explicit Runge-Kutta schemes for high-order compressible flow simulations. J. Comput. Phys. 464, 111333 (2022) https://doi.org/10.1016/j.jcp.2022.111333 |
| [2] |
|
| [3] |
|
| [4] |
Ålund, O., Nordström, J.: Encapsulated high order difference operators on curvilinear non-conforming grids. J. Comput. Phys. 385, 209–224 (2019) https://doi.org/10.1016/j.jcp.2019.02.007 |
| [5] |
|
| [6] |
|
| [7] |
Besançon, G., Pham, T.V., Georges, D.: Robust state estimation for a class of convection-diffusion-reaction systems. IFAC Proceedings Volumes 46(26), 203–208 (2013). https://doi.org/10.3182/20130925-3-FR-4043.00012 |
| [8] |
Bressan, A.: Hyperbolic Systems of Conservation Laws: the One-Dimensional Cauchy Problem vol. 20. Oxford University Press, USA (2000). https://doi.org/10.1093/oso/9780198507000.001.0001 |
| [9] |
Brezzi, F., Ushiki, S., Fujii, H.: “Real” and “ghost” bifurcation dynamics in difference schemes for ODEs. In: Küpper, T., Mittelmann, H.D., Weber, H. (eds) Numerical Methods for Bifurcation Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol. 70, pp. 79–104. Birkhäuser, Basel (1984). https://doi.org/10.1007/978-3-0348-6256-1_6 |
| [10] |
Buonomo, B., Rionero, S.: On the Lyapunov stability for SIRS epidemic models with general nonlinear incidence rate. Appl. Math. Comput. 217(8), 4010–4016 (2010). https://doi.org/10.1016/j.amc.2010.10.007 |
| [11] |
Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations, vol. 1. Courier Corporation (2013) |
| [12] |
|
| [13] |
|
| [14] |
Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.1994.1057 |
| [15] |
|
| [16] |
Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Interscience Publishers, New York, NY (1962). https://doi.org/10.1002/9783527617234 |
| [17] |
Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018) https://doi.org/10.1016/j.jcp.2017.12.015 |
| [18] |
Curtain, R., Zwart, H.: Introduction to Infinite-Dimensional Systems Theory: a State-Space Approach. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0590-5 |
| [19] |
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, New York (2016). https://doi.org/10.1007/978-3-662-49451-6 |
| [20] |
Del Rey Fernández, D.C., Boom, P.D., Carpenter, M.H., Zingg, D.W.: Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates. J. Sci. Comput. 80, 1957–1996 (2019) https://doi.org/10.1007/s10915-019-01011-3 |
| [21] |
Del Rey Fernández, D.C., Carpenter, M.H., Dalcin, L., Zampini, S., Parsani, M.: Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier-Stokes equations. SN Partial Differ. Equ. Appl. 1(2), 1–54 (2020). https://doi.org/10.1007/s42985-020-00009-z |
| [22] |
|
| [23] |
Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multidimensional summation-by-parts operators. J. Sci. Comput. 75, 83–110 (2018) https://doi.org/10.1007/s10915-017-0523-7 |
| [24] |
Drábek, P., Zahradníková, M.: Traveling waves in reaction-diffusion-convection equations with combustion nonlinearity. Nonlinear Anal.: Real World Appl. 84, 104283 (2025). https://doi.org/10.1016/j.nonrwa.2024.104283 |
| [25] |
Duru, K., Gabriel, A.-A., Kreiss, G.: On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation. Comput. Method. Appl. Mech. Eng. 350, 898–937 (2019) https://doi.org/10.1016/j.cma.2019.02.036 |
| [26] |
|
| [27] |
Fernandez, D.D.R., Carpenter, M.H., Dalcin, L., Fredrich, L., Rojas, D., Winters, A., Gassner, G., Zampini, S., Parsani, M.: Entropy stable nonconforming discretizations with the summation-by-parts property for curvilinear coordinates. NASA/TM-2020-220574 (2020) |
| [28] |
|
| [29] |
|
| [30] |
Friedrich, L., Winters, A.R., Del Rey Fernández, D.C., Gassner, G.J., Parsani, M., Carpenter, M.H.: An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property. J. Sci. Comput. 77, 689–725 (2018) https://doi.org/10.1007/s10915-018-0733-7 |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. John Wiley & Sons, Inc. (2013). https://doi.org/10.1002/9781118548448 |
| [35] |
|
| [36] |
|
| [37] |
Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multidimensional summation-by-part operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4) (2016) https://doi.org/10.1137/15M1038360 |
| [38] |
Iserles, A.: Stability and dynamics of numerical methods for nonlinear ordinary differential equations. IMA J. Numer. Anal. 10, 1–30 (1990) https://doi.org/10.1093/imanum/10.1.1 |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Komornik, V.: Exact Controllability and Stabilization: the Multiplier Method, vol. 39. Wiley, Chichester (1994) |
| [43] |
|
| [44] |
Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press (1974). https://doi.org/10.1016/B978-0-12-208350-1.50012-1 |
| [45] |
|
| [46] |
|
| [47] |
LaSalle, J.P., Artstein, Z.: The Stability of Dynamical Systems. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1976) |
| [48] |
LaSalle, J.P., Lefschetz, S.: Stability by Liapunov’s Direct method: With Applications. Mathematics in Science and Engineering: a Series of Monographs and Textbooks. Academic Press, New York (1961) |
| [49] |
|
| [50] |
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, vol. 2. Springer, New York (1984) |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
Merriam, M.L.: An Entropy-Based Approach to Nonlinear Stability. NASA Technical Memorandum 101086 (64), 1–154 (1989) |
| [55] |
Nartsissov, Y.R.: Application of a multicomponent model of convectional reaction-diffusion to description of glucose gradients in a neurovascular unit. Front. Physiol. 13, 843473 (2022). https://doi.org/10.3389/fphys.2022.843473 |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Parsani, M., Boukharfane, R., Nolasco, I.R., Del Rey Fernández, D.C., Zampini, S., Hadri, B., Dalcin, L.: High-order accurate entropy-stable discontinuous collocated Galerkin methods with the summation-by-parts property for compressible CFD frameworks: scalable SSDC algorithms and flow solver. J. Comput. Phys. 424, 109844 (2021). https://doi.org/10.1016/j.jcp.2020.109844 |
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
Smoller, J.: Shock Waves and Reaction—Diffusion Equations. Springer, New York (2012). https://doi.org/10.1007/978-1-4684-0152-3 |
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156 |
| [74] |
Umbricht, G.F., Rubio, D., Tarzia, D.A.: Bilayer one-dimensional convection-diffusion-reaction-source problem: analytical and numerical solution. Int. J. Thermal Sci. 208, 109471 (2025). https://doi.org/10.1016/j.ijthermalsci.2024.109471 |
| [75] |
Vargas-De-León, C.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24(1), 75–85 (2015). https://doi.org/10.1016/j.cnsns.2014.12.013 |
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
Yamaleev, N.K., Fernandez, D.C.D.R., Lou, J., Carpenter, M.H.: Entropy stable spectral collocation schemes for the 3-D Navier-Stokes equations on dynamic unstructured grids. J. Comput. Phys. 399, 108897 (2019) https://doi.org/10.1016/j.jcp.2019.108897 |
| [80] |
Yang, J., Crean, J., Hicken, J.E.: Interior penalties for summation-by-parts discretizations of linear second-order differential equations. J. Sci. Comput. 75, 1385–1414 (2018) https://doi.org/10.1007/s10915-017-0591-8 |
The Author(s)
/
| 〈 |
|
〉 |