Exactly Divergence-Free Ultra-Weak Discontinuous Galerkin Method for Incompressible Flow

Zhengyang Xue , Yinhua Xia

Communications on Applied Mathematics and Computation ›› : 1 -28.

PDF
Communications on Applied Mathematics and Computation ›› :1 -28. DOI: 10.1007/s42967-025-00508-z
Original Paper
research-article

Exactly Divergence-Free Ultra-Weak Discontinuous Galerkin Method for Incompressible Flow

Author information +
History +
PDF

Abstract

In this paper, we present an ultra-weak discontinuous Galerkin (UWDG) method that employs H(div)-conforming spaces for solving incompressible flows, ensuring exact divergence-free solutions. Leveraging the exact divergence-free property and the continuity of the normal velocity at cell interfaces, the convection term is formulated in conservative form and discretized as the DG method for conservation laws. To achieve a high-order time discretization, we first implement a predictor-corrector procedure utilizing either one-step or multi-step methods. Then, we integrate the spectral deferred correction scheme to develop a linear semi-implicit high-order fully discrete scheme. Numerical experiments demonstrate the efficiency and accuracy of this high-order method.

Keywords

Incompressible Navier-Stokes equations / Ultra-weak discontinuous Galerkin (UWDG) method / $H(\text {div})$-conforming')">$H(\text {div})$-conforming / Exactly divergence-free / Spectral deferred correction scheme / 65M60 / 65M12 / 65M20 / 76D05

Cite this article

Download citation ▾
Zhengyang Xue, Yinhua Xia. Exactly Divergence-Free Ultra-Weak Discontinuous Galerkin Method for Incompressible Flow. Communications on Applied Mathematics and Computation 1-28 DOI:10.1007/s42967-025-00508-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmestoyPR, DuffIS, L’ExcellentJ-Y, KosterJ. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 2001, 23(1): 15-41

[2]

ArnoldDN. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 1982, 19(4): 742-760

[3]

ArnoldDN, BrezziF, CockburnB, MariniLD. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 2001, 39(5): 1749-1779

[4]

ArnoldDN, BrezziF, FortinM. A stable finite element for the Stokes equations. Calcolo, 1984, 21(4): 337-344

[5]

BellJB, ColellaP, GlazHM. A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys., 1989, 85(2): 257-283

[6]

Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

[7]

BrezziF, DouglasJJr, MariniLD. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 1985, 47(2): 217-235

[8]

BrownDL, MinionML. Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys., 1995, 122(1): 165-183

[9]

ChenX, LiY, DrapacaC, CimbalaJ. A unified framework of continuous and discontinuous Galerkin methods for solving the incompressible Navier-Stokes equation. J. Comput. Phys., 2020, 422109799

[10]

ChenY, XingY. Optimal error estimates of ultra-weak discontinuous Galerkin methods with generalized numerical fluxes for multi-dimensional convection-diffusion and biharmonic equations. Math. Comp., 2024, 93(349): 2135-2183

[11]

ChengY, ShuC-W. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comp., 2008, 77(262): 699-730

[12]

ChorinAJ. Numerical solution of the Navier-Stokes equations. Math. Comp., 1968, 22: 745-762

[13]

Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. II, pp. 17–351. North-Holland, Amsterdam (1991)

[14]

Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31(1/2), 61–73 (2007)

[15]

DiY, LiR, TangT, ZhangP. Moving mesh finite element methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput., 2005, 26(3): 1036-1056

[16]

DuttA, GreengardL, RokhlinV. Spectral deferred correction methods for ordinary differential equations. BIT, 2000, 40(2): 241-266

[17]

ErturkE. Discussions on driven cavity flow. Internat. J. Numer. Methods Fluids, 2009, 60(3): 275-294

[18]

FuG. An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Engrg., 2019, 345: 502-517

[19]

GhiaU, GhiaKN, ShinC. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys., 1982, 48(3): 387-411

[20]

Glowinski, R.: Finite element methods for incompressible viscous flow. In: Handbook of Numerical Analysis, pp. 3–1176. North-Holland, Amsterdam (2003)

[21]

Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195(44/45/46/47), 6011–6045 (2006)

[22]

GuzmánJ, ShuC-W, SequeiraFA. $H \rm (div)$ conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal., 2017, 37(4): 1733-1771

[23]

Ham, D.A., Kelly, P.H.J., Mitchell, L., Cotter, C.J., Kirby, R.C., Sagiyama, K., Bouziani, N., Vorderwuelbecke, S., Gregory, T.J., Betteridge, J., Shapero, D.R., Nixon-Hill, R.W., Ward, C.J., Farrell, P.E., Brubeck, P.D., Marsden, I., Gibson, T.H., Homolya, M., Sun, T., McRae, A.T.T., Luporini, F., Gregory, A., Lange, M., Funke, S.W., Rathgeber, F., Bercea, G.-T., Markall, G.R.: Firedrake User Manual. Imperial College London University of Oxford and Baylor University and University of Washington, first edition edition 5 (2023)

[24]

Han, Y., Hou, Y.: Semirobust analysis of an $H$(div)-conforming DG method with semi-implicit time-marching for the evolutionary incompressible Navier-Stokes equations. IMA J. Numer. Anal. 42(2), 1568–1597 (2022)

[25]

Hood, P., Taylor, C.: Navier-Stokes equations using mixed interpolation. In: Oden, J.T. (ed) Finite Element Methods in Flow Problems: a Collection of Papers and Extended Abstracts of Papers Presented at the International Symposium on Finite Element Methods in Flow Problems, pp. 121–132. UAH Press, Huntsville (1974)

[26]

HuangF, ShenJ. Stability and error analysis of a class of high-order IMEX schemes for Navier-Stokes equations with periodic boundary conditions. SIAM J. Numer. Anal., 2021, 59(6): 2926-2954

[27]

JohnV, LinkeA, MerdonC, NeilanM, RebholzLG. On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev., 2017, 59(3): 492-544

[28]

KrankB, FehnN, WallWA, KronbichlerM. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J. Comput. Phys., 2017, 348: 634-659

[29]

LaytonW, ManicaCC, NedaM, OlshanskiiM, RebholzLG. On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys., 2009, 228(9): 3433-3447

[30]

LiuJ-G, ShuC-W. A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys., 2000, 160(2): 577-596

[31]

LiuY, TaoQ, ShuC-W. Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM Math. Model. Numer. Anal., 2020, 54(6): 1797-1820

[32]

MadayY, PateraAT, RønquistEM. An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput., 1990, 5(4): 263-292

[33]

MelenkJM, RezaijafariH, WohlmuthB. Quasi-optimal a priori estimates for fluxes in mixed finite element methods and an application to the Stokes-Darcy coupling. IMA J. Numer. Anal., 2014, 34(1): 1-27

[34]

MinionML, SayeRI. Higher-order temporal integration for the incompressible Navier-Stokes equations in bounded domains. J. Comput. Phys., 2018, 375: 797-822

[35]

OsherS, ShuC-W. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal., 1991, 28(4): 907-922

[36]

QiuJ, KhooBC, ShuC-W. A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys., 2006, 212(2): 540-565

[37]

RathgeberF, HamDA, MitchellL, LangeM, LuporiniF, McRaeAT, BerceaG-T, MarkallGR, KellyPH. Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. (TOMS), 2016, 43(3): 1-27

[38]

Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds). Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin, Heidelberg (1977)

[39]

Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex, USA (1973)

[40]

Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag (1996)

[41]

Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds) Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, Basel, pp. 149–201 (2009)

[42]

StillerJ. A spectral deferred correction method for incompressible flow with variable viscosity. J. Comput. Phys., 2020, 423109840

[43]

WangH, LiuY, ZhangQ, ShuC-W. Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comp., 2019, 88(315): 91-121

[44]

WangH, XuA, TaoQ. Analysis of the implicit-explicit ultra-weak discontinuous Galerkin method for convection-diffusion problems. J. Comput. Math., 2024, 42(1): 1-23

[45]

Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The $L^2$-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)

[46]

YaoL, XiaY, XuY. L-stable spectral deferred correction methods and applications to phase field models. Appl. Numer. Math., 2024, 197: 288-306

[47]

ZhouL, XuY. Stability analysis and error estimates of semi-implicit spectral deferred correction coupled with local discontinuous Galerkin method for linear convection-diffusion equations. J. Sci. Comput., 2018, 77(2): 1001-1029

Funding

National Natural Science Foundation of China(12271498)

Shanghai Institute for Mathematics and Interdisciplinary Sciences(SIMIS-ID-2024-(XS))

RIGHTS & PERMISSIONS

Shanghai University

PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

/