On the Length of Generating Sets with Conditions on Minimal Polynomial

Chengjie Wang

Communications on Applied Mathematics and Computation ›› : 1 -23.

PDF
Communications on Applied Mathematics and Computation ›› :1 -23. DOI: 10.1007/s42967-025-00507-0
Original Paper
research-article

On the Length of Generating Sets with Conditions on Minimal Polynomial

Author information +
History +
PDF

Abstract

Linear upper bounds may be derived by imposing specific structural conditions on a generating set, such as additional constraints on ranks, eigenvalues, or the degree of the minimal polynomial of the generating matrices. This paper establishes a linear upper bound of $3n-5$ for generating sets that contain a matrix whose minimal polynomial has a degree exceeding $\frac{n}{2}$, where $n$ denotes the order of the matrix. Compared to the bound provided in Theorem 3.1 of Guterman et al. (Linear Algebra Appl 543: 234–250, 2018), this result reduces the constraints on the Jordan canonical forms. In addition, it is demonstrated that the bound $\frac{7n}{2}-4$ holds when the generating set contains a matrix with a minimal polynomial of degree $t$ satisfying $2t\leqslant n\leqslant 3t-1$. The primary enhancements consist of quantitative bounds and reduced reliance on Jordan form structural constraints.

Keywords

The full matrix algebra / Length of an algebra / Generating systems / The degree of minimal polynomial / 15A03 / 15A30 / 16P10

Cite this article

Download citation ▾
Chengjie Wang. On the Length of Generating Sets with Conditions on Minimal Polynomial. Communications on Applied Mathematics and Computation 1-23 DOI:10.1007/s42967-025-00507-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ConstantineD, DarnallM. Lengths of finite dimensional representations of PBW algebras. Linear Algebra Appl., 2005, 395: 175-181.

[2]

GutermanAE, KhrystikMA, MarkovaOV. On the lengths of group algebras of finite abelian groups in the modular case. J. Algebra Appl., 2022, 21: 2250117-2250130.

[3]

GutermanAE, KudryavtsevDK. The lengths of the quaternion and octonion algebras. J. Math. Sci., 2017, 224: 826-832.

[4]

GutermanAE, KudryavtsevDK. Upper bounds for the length of non-associative algebras. J. Algebra, 2020, 544: 483-497.

[5]

GutermanAE, LaffeyTJ, MarkovaOV, ŠmigocH. A resolution of Paz’s conjecture in the presence of a nonderogatory matrix. Linear Algebra Appl., 2018, 543: 234-250.

[6]

GutermanAE, MarkovaOV. Commutative matrix subalgebras and length function. Linear Algebra Appl., 2009, 430: 1790-1805.

[7]

GutermanAE, MarkovaOV. The lengths of group algebras of small-order groups. J. Math. Sci., 2019, 240: 754-761.

[8]

Guterman, A.E., Markova, O.V.: The length of the group algebra of the group $Q_8$. New trends in algebra and combinatorics. In: Shum, K.P.; Zelmanov, E.A., Kolesnikov, P.S., Anita Wong, S.M. (eds.) Proc. 3rd Int. Congress in Algebra and Combinatorics, pp. 105–133. World Scientific, Singapore (2020)

[9]

GutermanAE, MarkovaOV, KhrystikMA. On the lengths of group algebras of finite abelian groups in the semi-simple case. J. Algebra Appl., 2022, 21: 2250140-2250153.

[10]

GutermanAE, MarkovaOV, SochnevSD. The algebra of semimagic matrices and its length. J. Math. Sci., 2014, 199: 400-413.

[11]

GutermanAE, ZhilinaSA. On the lengths of descendingly flexible and descendingly alternative algebras. J. Algebra, 2024, 651: 187-220.

[12]

GutermanAE, ZhilinaSA. On the lengths of Okubo algebras. J. Algebra, 2024, 653: 257-280.

[13]

KhrystikMA. Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case. J. Math. Sci., 2024, 281: 334-341.

[14]

KhrystikMA, MaksaevAM. A proof of the Paz conjecture for $6\times 6$ matrices. Linear Algebra Appl., 2025, 704: 249-269.

[15]

KhrystikMA, MarkovaOV. On the length of the group algebra of the dihedral group in the semi-simple case. Commun. Algebra, 2021, 50: 2223-2232.

[16]

Klep, I., Špenko, Š.: Sweeping words and the length of a generic vector subspace of ${\rm M} _{n}({\mathbb{F}})$. J. Comb. Theory Ser. A 143, 56–65 (2016)

[17]

KolegovNA, MarkovaOV. The lengths of matrix incidence algebras over small finite fields. J. Math. Sci., 2022, 262: 62-83.

[18]

LambrouMS, LongstaffWE. On the lengths of pairs of complex matrices of size six. Bull. Aust. Math. Soc., 2009, 80: 177-201.

[19]

LongstaffWE. Burnside’s theorem: irreducible pairs of transformations. Linear Algebra Appl., 2004, 382: 247-269.

[20]

LongstaffWE, NiemeyerAC, PanaiaO. On the lengths of pairs of complex matrices of size at most five. Bull. Aust. Math. Soc., 2006, 73: 461-472.

[21]

LongstaffWE, RosenthalP. On the lengths of irreducible pairs of complex matrices. Proc. Am. Math. Soc., 2011, 139: 3769-3777.

[22]

MarkovaOV. On the length of the algebra of upper-triangular matrices. Russ. Math. Surv., 2005, 60: 984-985.

[23]

MarkovaOV. Length computation of matrix subalgebras of special type. J. Math. Sci., 2008, 155: 908-931.

[24]

MarkovaOV. On some properties of the length function. Math. Notes, 2010, 87: 71-78.

[25]

MarkovaOV. The length function and matrix algebras. J. Math. Sci., 2013, 193: 687-768.

[26]

MarkovaOV. An example of length computation for a group algebra of a noncyclic Abelian group in the modular case. J. Math. Sci., 2022, 262: 740-748.

[27]

MarkovaOV, KhrystikMA. Length of the group algebra of the dihedral group of order $2^k$. J. Math. Sci., 2021, 255: 324-331.

[28]

PappacenaCJ. An upper bound for the length of a finite-dimensional algebra. J. Algebra, 1997, 197: 535-545.

[29]

PazA. An application of the Cayley-Hamilton theorem to matrix polynomials in several variables. Linear Multilinear Algebra, 1984, 15: 161-170.

[30]

RosenthalD. Words containing a basis for the algebra of all matrices. Linear Algebra Appl., 2012, 436: 2615-2617.

[31]

ShitovY. An improved bound for the lengths of matrix algebras. Algebra Number Theory, 2019, 13: 1501-1507.

[32]

Shitov, Y.: Growth in group algebras of dihedral groups. Preprint, ResearchGate (2025). Available at https://doi.org/10.13140/RG.2.2.24689.19043

[33]

Shitov, Y.: Growth in group algebras of finite Abelian groups. Preprint, ResearchGate (2025). Available at https://doi.org/10.13140/RG.2.2.28329.71527

[34]

Shitov, Y.: Remarks on generating families of matrix algebras of small orders. Linear Algebra Appl. 708, 458–462 (2025)

[35]

SpencerA, RivlinRS. The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal., 1958, 2: 309-336.

[36]

SpencerA, RivlinRS. Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal., 1959, 4: 214-230.

RIGHTS & PERMISSIONS

Shanghai University

PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

/