Spanning Eulerian Subdigraph in Line Digraphs

Juan Liu , Hong Yang , Xindong Zhang , Hong-Jian Lai

Communications on Applied Mathematics and Computation ›› : 1 -27.

PDF
Communications on Applied Mathematics and Computation ›› :1 -27. DOI: 10.1007/s42967-025-00505-2
Original Paper
research-article

Spanning Eulerian Subdigraph in Line Digraphs

Author information +
History +
PDF

Abstract

A line digraph L(D) of a directed multigraph $D=(V(D),A(D))$ has as its vertex-set being A(D), the set of arcs of D, where (ab) is an arc of L(D) if and only if there are vertices uv, and w in D such that $a=(u,v)$ and $b=(v,w)$ are in A(D). In this paper, we obtain sufficient and necessary conditions for a line digraph L(D) to be supereulerian and to have a spanning trail, respectively, in terms of certain types of path-cycle covers of D. These results will be applied to show each of the following for a digraph D. (i) If $|A(D)|\geqslant (|V(D)|-1)^2+1$, then L(D) is supereulerian. The lower bound on |A(D)| is best possible in the sense that there exists an infinite family of digraphs each of which satisfies $|A(D)| = (|V(D)|-1)^2$ without a supereulerian line digraph. (ii) There exists a well-characterized digraph family $\mathcal {M}$ such that if D is strong with $|A(D)|\leqslant |V(D)|+2$, then L(D) is supereulerian if and only if $D\not \in \mathcal {M}$.

Keywords

Supereulerian digraph / Line digraph / t-q-path-cycle cover / Dense digraph / Sparse digraph / 05C20 / 05C76

Cite this article

Download citation ▾
Juan Liu, Hong Yang, Xindong Zhang, Hong-Jian Lai. Spanning Eulerian Subdigraph in Line Digraphs. Communications on Applied Mathematics and Computation 1-27 DOI:10.1007/s42967-025-00505-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AignerM. On the line graph of a directed graph. Math. Z., 1967, 102(1): 56-61

[2]

AlgefariMJ, AlsatamiKA, LaiH-J, LiuJ. Supereulerian digraphs with given local structures. Inf. Process. Lett., 2016, 116(5): 321-326

[3]

AlgefariMJ, LaiH-J. Supereulerian digraphs with large arc-strong connectivity. J. Graph Theory, 2016, 81(4): 393-402

[4]

AlgefariMJ, LaiH-J, XuJQ. Locally dense supereulerian digraphs. Discrete Appl. Math., 2018, 238: 24-31

[5]

AlsatamiKA, ZhangXD, LiuJ, LaiH-J. On a class of supereulerian digraphs. Appl. Math., 2016, 7(3): 320-326

[6]

Bang-JensenJ, DéprésH, YeoA. Spanning eulerian subdigraphs avoiding $k$ prescribed arcs in tournaments. Discrete Math., 2020, 34312112129

[7]

Bang-JensenJ, GutinGDigraphs: Theory, Algorithms and Applications, 20092London. Springer-Verlag.

[8]

Bang-JensenJ, MaddaloniA. Sufficient conditions for a digraph to be supereulerian. J. Graph Theory, 2015, 79(1): 8-20

[9]

BoeschFT, SuffelC, TindellR. The spanning subgraphs of eulerian graphs. J. Graph Theory, 1977, 1(1): 79-84

[10]

BondyJA, MurtyUSRGraph Theory, 2008, New York. Springer-Verlag.

[11]

CatlinPA. A reduction method to find spanning Eulerian subgraphs. J. Graph Theory, 1988, 12(1): 29-44

[12]

CatlinPA. Supereulerian graphs: a survey. J. Graph Theory, 1992, 16(2): 177-196

[13]

Chen, Z.H., Lai, H.-J.: Reduction techniques for super-Eulerian graphs and related topics-a survey. In: Ku, T.-H. (ed) Combinatorics and Graph Theory’ 95, Vol. 1, pp. 53–69. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong (1995)

[14]

Gutin, G.: Cycles and paths in directed graphs, PhD thesis. School of Mathematics, Tel Aviv University, (1993)

[15]

GutinG. Connected $(g;f)$-factors and supereulerian digraphs. Ars Combin., 2000, 54: 311-317

[16]

Harary, F., Nash-Williams, C.St.J.A.: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. 8(6), 701–710 (1965)

[17]

HongYM, LaiH-J, LiuQH. Supereulerian digraphs. Discrete Math., 2014, 330(6): 87-95

[18]

HongYM, LiuQH, LaiH-J. Ore-type degree condition of supereulerian digraphs. Discrete Math., 2016, 339(8): 2042-2050

[19]

HuangY, HeW, HuangG, LaiH-J, SongS. A characterization of graphs with supereulerian line graphs. Int. J. Comput. Math. Comput. Syst. Theory, 2020, 5: 1-14

[20]

LaiH-J, ShaoY, YanH. An update on supereulerian graphs. WSEAS Transactions on Mathematics, 2013, 12: 926-940

[21]

LiuJ, LasfarO, WeiJ, ZhangXD, LaiH-J. Matching and spanning trails in digraphs. Discrete Appl. Math., 2021, 304: 417-433

[22]

LiuJ, YangH, LaiH-J, ZhangXD. Symmetric core and spanning trails in directed networks. Discrete Math., 2021, 344112584

[23]

LiuJ, YangH, ZhangXD, LaiH-J. Hamiltonian-connected line digraphs.. Adv. Math., 2023, 52: 224-234

[24]

ZhangXD, LiuJ, WangL, LaiH-J. Supereulerian bipartite digraphs. J. Graph Theory, 2018, 89(1): 64-75

Funding

NSFC(12261016)

RIGHTS & PERMISSIONS

Shanghai University

PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

/