PDF
Abstract
In this article, we propose and analyze a least-squares-based weak Galerkin finite-element method (WG-FEM) for solving the indefinite time-harmonic Maxwell’s equations in ${\mathbb {R}}^d\;(d=2, 3).$ The super-convergence of order one for the discrete $\textbf{H}^1$-like norm has been established. Numerical simulations show that the approximate solutions converge to the exact solutions with optimal rates in the $L^2$ norm on hybrid meshes. In addition, this method is shown to be absolutely stable under low regularity requirements with high wave numbers.
Keywords
Least-squares
/
Weak Galerkin (WG)
/
Finite-element method
/
Maxwell’s equations
/
Polygonal/Polyhedral meshes
/
Primary: 65N15
/
65N30
/
76D07
/
Secondary: 35B45
/
35J50
Cite this article
Download citation ▾
Raman Kumar, Bhupen Deka.
A Least-Squares-Based Weak Galerkin Finite-Element Method for the Time-Harmonic Maxwell’s Equations.
Communications on Applied Mathematics and Computation 1-27 DOI:10.1007/s42967-025-00504-3
| [1] |
Adams, R.A., Fournier, J.: Sobolev Spaces. Academic Press, New York (1975)
|
| [2] |
Ainsworth, M., Coyle, J.: Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190(49/50), 6709–6733 (2001)
|
| [3] |
Alvarado, A., Castillo, P.: Computational performance of LDG methods applied to time-harmonic Maxwell’s equation in polyhedral domains. J. Sci. Comput. 67, 453–474 (2016)
|
| [4] |
Bacuta, C., Jacavage, J., Qirko, K., Sayas, F. J.: Saddle point least squares iterative solvers for the time harmonic Maxwell’s equations. Comput. Math. Appl. 74(11), 2915–2928 (2017)
|
| [5] |
Bensow, R., Larson, M.G.: Discontinuous least-squares finite element method for the div-curl problem. Numer. Math. 101(4), 601–617 (2005)
|
| [6] |
Bochev, P., Lai, J., Olson, L.: A locally conservative, discontinuous least-squares finite element method for the Stokes equations. International Journal for Numerical Methods in Fluids 68(6), 782–804 (2012)
|
| [7] |
Bochev, P.B., Gunzburger, M.D.: Finite element methods of least-squares type. SIAM Review 40(4), 789–837 (1998)
|
| [8] |
Bramble, J.H., Kolev, T.V., Pasciak, J.E.: A least-squares approximation method for the time-harmonic Maxwell equations. Journal of Numerical Mathematics 13(4) 237–263 (2005)
|
| [9] |
Brenner, S, Li, F, Sung, L Y.: A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell’s equations. Math. Comput. 76(258), 573–595 (2007)
|
| [10] |
Burman, E., Duran, O., Ern, A., Steins, M.: Convergence analysis of hybrid high-order methods for the wave equation. J. Sci. Comput. 87(3), 1–30 (2021)
|
| [11] |
Carstensen, C., Zhai, Q., Zhang, R.: A skeletal finite element method can compute lower eigenvalue bounds. SIAM J. Numer. Anal. 58(1), 109–124 (2020)
|
| [12] |
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)
|
| [13] |
ChangCL. A least-squares finite element method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng., 1990, 83(1): 1-7
|
| [14] |
Chen, H., Qiu, W.: A first order system least squares method for the Helmholtz equation. Journal of Computational and Applied Mathematics 309, 145–162 (2017)
|
| [15] |
Cicuttin M., Geuzaine C.: Numerical investigation of a 3D hybrid high-order method for the indefinite time-harmonic Maxwell’s problem. Finite Element in Analysis and Design 233, 104124 (2024)
|
| [16] |
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modeling and Numerical Analysis 50(3), 635–650 (2016)
|
| [17] |
Dong, Z., Ern, A.: Hybrid high-order and weak Galerkin methods for the biharmonic problem. arXiv:2103.16404 (2021)
|
| [18] |
EggerH, SchöberlJ. A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J. Numer. Anal., 2010, 30(4): 1206-1234
|
| [19] |
Feng, X., Lu, P., Xu, X. A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell’s equations with high wave number. Computational Methods in Applied Mathematics 16(3), 429–445 (2016)
|
| [20] |
Feng, X., Wu, H.J.: An absolutely stable discontinuous Galerkin method for the indefinite time-harmonic Maxwell’s equations with large wave number. SIAM J. Numer. Anal. 52(5), 2356–2380 (2014)
|
| [21] |
Vivette, G., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, volume 5. Springer Science and Business Media (2012)
|
| [22] |
Graglia, R.D.: Donald R Wilton, D.R., Peterson, A.F.: Higher order interpolatory vector bases for computational electromagnetics. IEEE Transactions on Antennas and Propagation 45(3), 329–342 (1997)
|
| [23] |
Gudi, T., Mallik, G., Pramanick, T.: A hybrid high-order method for quasilinear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 60(4), 2318–2344 (2022)
|
| [24] |
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)
|
| [25] |
Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. Math. Comput. 82(281), 247–268 (2013)
|
| [26] |
Houston, Perugia, P., I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell’s equations. Numer. Math. 100, 485–518 (2005)
|
| [27] |
Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell’s operator: the indefinite case. ESAIM: Mathematical Modelling and Numerical Analysis, 39(4),727–753 (2005)
|
| [28] |
Hu, Q., Song, R.: A variant of the plane wave least squares method for the time-harmonic Maxwell’s equations. ESAIM: Mathematical Modelling and Numerical Analysis 53(1), 85–103 (2019)
|
| [29] |
Hughes, T.J.R., Masud, A., Wan, J.:. A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput. Methods Appl. Mech. Eng., 195(25/26/27/28), 3347–3381 (2006)
|
| [30] |
Jin, J.-M.:. The Finite Element Method in Electromagnetics. John Wiley & Sons (2015)
|
| [31] |
Kumar, R., Deka, B.: Weak Galerkin finite element methods for H(curl) and H(curl, div)-elliptic problems. Comput. Math. Appl. 147, 210–221 (2023)
|
| [32] |
LiJ, YeX, ZhangS. A weak Galerkin least-squares finite element method for div-curl systems. J. Comput. Phys., 2018, 363: 79-86
|
| [33] |
LiR, LiuQ, YangF. A discontinuous least squares finite element method for the Helmholtz equation. Numerical Methods for Partial Differential Equations, 2023, 39(2): 1425-1448
|
| [34] |
LiR, YangF. A sequential least squares method for Poisson equation using a patch reconstructed space. SIAM J. Numer. Anal., 2020, 58(1): 353-374
|
| [35] |
Lu, P., Chen, H., Qiu, W.: An absolutely stable $hp$-HDG method for the time-harmonic Maxwell’s equations with high wave number. Math. Comput. 86(306), 1553–1577 (2017)
|
| [36] |
MonkP. A finite element method for approximating the time-harmonic Maxwell’s equations. Numer. Math., 1992, 63(1): 243-261
|
| [37] |
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)
|
| [38] |
LinM, WangJ, YeX. A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J. Sci. Comput., 2017, 39(4): A1531-A1557
|
| [39] |
LinM, WangJ, YeX, ZhangS. A weak Galerkin finite element method for the Maxwell’s equations. J. Sci. Comput., 2015, 65(1): 363-386
|
| [40] |
Nédélec, J.C.: A new family of mixed finite elements in ${\mathbb{R} }^3$. Numerische Mathematik 50, 57–81 (1986)
|
| [41] |
Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys., 230(19), 7151–7175 (2011)
|
| [42] |
SchöberlJ, ZaglmayrS. High order Nédélec elements with local complete sequence properties. COMPEL, 2005, 24(2): 374-384
|
| [43] |
Tang, M., Zhong, L., Xie, Y.: A modified weak Galerkin method for H(curl)-elliptic problem. Comput. Math. Appl., 139, 224–229 (1987)
|
| [44] |
WangC. New discretization schemes for time-harmonic Maxwell’s equations by weak Galerkin finite element methods. J. Comput. Appl. Math., 2018, 341: 127-143
|
| [45] |
WangC, WangJ. Discretization of div-curl systems by weak Galerkin finite element methods on polyhedral partitions. J. Sci. Comput., 2016, 68(3): 1144-1171
|
| [46] |
WangJ, YeX. A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput., 2014, 83(289): 2101-2126
|
| [47] |
WangX, YeX, ZhangS, ZhuP. A weak Galerkin least squares finite element method of Cauchy problem for Poisson equation. J. Comput. Appl. Math., 2022, 401113767
|
| [48] |
XieY, TangM, TangC. A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations. Appl. Math. Comput., 2022, 435127471
|
| [49] |
ZhuL, HuangT-Z, LiL. A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett., 2017, 68: 109-116
|
RIGHTS & PERMISSIONS
Shanghai University
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.