PDF
Abstract
In this paper, we investigate the solutions to the dual quaternion matrix equation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB = C$$\end{document}
, including the general solution, the solution containing only the standard part, and the solution containing only the dual part. First, we present the real representation matrix of the dual quaternion matrix and analyze the properties of its vector operator. Then we transform the dual quaternion matrix equation into a real linear system and give the equivalent condition for the existence of the solutions to the dual quaternion matrix equation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB=C$$\end{document}
, which includes the general solution, the solution containing only the standard part, and the solution containing only the dual part. Furthermore, we obtain the expressions of these solutions and the minimal \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\textrm{F}^R$$\end{document}
-norm solutions to the dual quaternion matrix equation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB=C$$\end{document}
. Finally, we propose the algorithms and conduct numerical experiments to verify the validity of our method.
Keywords
Dual quaternion
/
Matrix equation
/
Real representation
/
Vector operator
Cite this article
Download citation ▾
Yinping Li, Ying Li, Xiaochen Liu, Ning Shao.
Solutions of the Dual Quaternion Matrix Equation
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB = C$$\end{document}
.
Communications on Applied Mathematics and Computation 1-15 DOI:10.1007/s42967-025-00498-y
| [1] |
ChenY, WangQ, XieL. Dual quaternion matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document} with applications. Symmetry, 2024, 163287.
|
| [2] |
ChengJ, KimJ, JiangZ, ChenW. Dual quaternion-based graphical SLAM. Robot. Auton. Syst., 2016, 77: 15-24.
|
| [3] |
CliffordWK. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc., 1873, 11381-395.
|
| [4] |
CuiC, QiL. A power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix. J. Sci. Comput., 2024, 100121.
|
| [5] |
DehghanM, HajarianM. On the generalized reflexive and anti-reflexive solutions to a system of matrix equations. Linear Algebra Appl., 2012, 437112793-2812.
|
| [6] |
DingW, LiY, WangD. A real method for solving quaternion matrix equation X-AX^B=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X-A\hat{X} B= C$$\end{document} based on semi-tensor product of matrices. Adv. Appl. Clifford Algebras, 2021, 3151-17.
|
| [7] |
DingW, LiY, WangT, WeiM. Dual quaternion singular value decomposition based on bidiagonalization to a dual number matrix using dual quaternion householder transformations. Appl. Math. Lett., 2024, 152. 109021
|
| [8] |
DmytryshynA, KagstromB. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl., 2015, 362580-593.
|
| [9] |
Franklin, J.N.: Matrix Theory. Courier Corporation, New York (2012)
|
| [10] |
FutornyV, KlymchukT, SergeichukV. Roth’s solvability criteria for the matrix equations AX-XB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AX - X^B= C$$\end{document} and X-AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X - AX^B= C$$\end{document} over the skew field of quaternions with an involutive automorphism q↦q^\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\mapsto \hat{q}$$\end{document}. Linear Algebra Appl., 2016, 510: 246-258.
|
| [11] |
LingC, QiL, YanH. Minimax principle for eigenvalues of dual quaternion Hermitian matrices and generalized inverses of dual quaternion matrices. Numer. Funct. Anal. Optim., 2023, 44131371-1394.
|
| [12] |
LiuL, WangQ, ChenJ, XieY. An exact solution to a quaternion matrix equation with an application. Symmetry, 2022, 142375.
|
| [13] |
LiuX, LiY, DingW, TaoR. A real method for solving octonion matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document} based on semi-tensor product of matrices. Adv. Appl. Clifford Algebras, 2024, 34212.
|
| [14] |
LiuX, SongG, ZhangY. Determinantal representations of the solutions to systems of generalized Sylvester equations. Adv. Appl. Clifford Algebras, 2020, 30112.
|
| [15] |
PengZ. A matrix LSQR iterative method to solve matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document}. Int. J. Comput. Math., 2010, 8781820-1830.
|
| [16] |
Qi, L., Luo, Z.: Eigenvalues and singular values of dual quaternion matrices. arXiv:2111.12211 (2021)
|
| [17] |
Qi, L., Wang, X., Luo, Z.: Dual quaternion matrices in multi-agent formation control. arXiv:2204.01229 (2022)
|
| [18] |
SiK, WangQ. The general solution to a classical matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document} over the dual split quaternion algebra. Symmetry, 2024, 164491.
|
| [19] |
TaoR, LiY, ZhangM, LiuX, WeiM. Solving the QLY least squares problem of dual quaternion matrix equation based on STP of dual quaternion matrices. Symmetry, 2024, 1691117.
|
| [20] |
TianY. Ranks of solutions of the matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document}. Linear Multilinear Algebra, 2003, 512111-125.
|
| [21] |
WangD, LiY, DingW. The least squares bisymmetric solution of quaternion matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document}. AIMS Math., 2021, 61213247-13257.
|
| [22] |
WangQ, XieL, GaoZ. A survey on solving the matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB=C$$\end{document} with applications. Mathematics, 2025, 133450.
|
| [23] |
WangQ, ZhangH, YuS. On solutions to the quaternion matrix equation AXB+CYD=E\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB+ CYD= E$$\end{document}. Electron. J. Linear Algebra, 2008, 17: 343-358
|
| [24] |
WangT, LiY, WeiM, XiY, ZhangM. Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm. Numerical Algorithms, 2024, 97: 1367-1382.
|
| [25] |
WangX, YuC, LinZ. A dual quaternion solution to attitude and position control for rigid-body coordination. IEEE Trans. Rob., 2012, 2851162-1170.
|
| [26] |
Wang, X., Yu, C., Zheng, Z.: Multiple rigid-bodies rendezvous problem based on unit dual quaternions (2022)
|
| [27] |
WangX, ZhuH. On the comparisons of unit dual quaternion and homogeneous transformation matrix. Adv. Appl. Clifford Algebras, 2014, 24: 213-229.
|
| [28] |
WeiM, LiY, ZhangF, ZhaoJQuaternion Matrix Computations, 2018New YorkNova Science Publisher
|
| [29] |
XuX, WangQ. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal., 2023, 14353.
|
| [30] |
Yang, A.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. Columbia University, New York (1963)
|
| [31] |
Yuan, S.: Least squares η\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\eta $$\end{document}-Hermitian solution for quaternion matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document}. In: Liu, C., Wang, L., Yang, A. (eds) Information Computing and Applications. ICICA 2012. Communications in Computer and Information Science, vol. 307, pp. 300–305. Springer, Berlin, Heidelberg (2012)
|
| [32] |
ZhangF, MuW, LiY, ZhaoJ. Special least squares solutions of the quaternion matrix equation AXB+CXD=E\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB+ CXD= E$$\end{document}. Comput. Math. Appl., 2016, 7251426-1435.
|
| [33] |
ZhangH, YinH. Conjugate gradient least squares algorithm for solving the generalized coupled Sylvester matrix equations. Comput. Math. Appl., 2017, 73122529-2547.
|
| [34] |
ZhangY, LiY, ZhaoH, ZhaoJ, WangG. Least-squares bihermitian and skew bihermitian solutions of the quaternion matrix equation AXB=C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$AXB= C$$\end{document}. Linear Multilinear Algebra, 2022, 7061081-1095.
|
Funding
National Natural Science Foundation of China(62176112)
Natural Science Foundation of Shandong Province(ZR2022MA030)
Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(319462208)
RIGHTS & PERMISSIONS
Shanghai University