Second-Order Divergence Constraint Preserving Schemes for Two-Fluid Relativistic Plasma Flow Equations

Jaya Agnihotri , Deepak Bhoriya , Harish Kumar , Praveen Chandrashekar , Dinshaw S. Balsara

Communications on Applied Mathematics and Computation ›› : 1 -36.

PDF
Communications on Applied Mathematics and Computation ›› :1 -36. DOI: 10.1007/s42967-025-00492-4
Original Paper
research-article

Second-Order Divergence Constraint Preserving Schemes for Two-Fluid Relativistic Plasma Flow Equations

Author information +
History +
PDF

Abstract

Two-fluid relativistic plasma flow equations combine the equations of relativistic hydrodynamics (RHD) with Maxwell’s equations for electromagnetic fields, which involve divergence constraints for the magnetic and electric fields. When developing numerical schemes for the model, the divergence constraints are ignored, or Maxwell’s equations are reformulated as perfectly hyperbolic Maxwell’s (PHM) equations by introducing additional equations for correction potentials. In the latter case, the divergence constraints are preserved only as the limiting case. In this article, we present second-order numerical schemes that preserve the divergence constraints for electric and magnetic fields at the discrete level. The schemes are based on using a multidimensional Riemann solver at the vertices of the cells to define the numerical fluxes on the edges. The second-order accuracy is obtained by reconstructing the electromagnetic fields at the corners using a MinMod limiter. The discretization of Maxwell’s equations can be combined with any consistent and stable discretization of the fluid parts. In particular, we consider entropy-stable schemes for the fluid part. The resulting schemes are second-order accurate, entropy stable, and preserve the divergence constraints of the electromagnetic fields. We use explicit and Implicit-Explicit-based (IMEX-based) time discretizations. We then test these schemes using several one- and two-dimensional test cases. We also compare the divergence constraint errors of the proposed schemes with schemes having no divergence constraints treatment and schemes based on the PHM-based divergence cleaning.

Keywords

Two-fluid relativistic plasma flows / Divergence constraints preserving schemes / Implicit-Explicit (IMEX) schemes / Multidimensional Riemann solvers / 65M06 / 35Q35 / 76X05 / 76M12

Cite this article

Download citation ▾
Jaya Agnihotri, Deepak Bhoriya, Harish Kumar, Praveen Chandrashekar, Dinshaw S. Balsara. Second-Order Divergence Constraint Preserving Schemes for Two-Fluid Relativistic Plasma Flow Equations. Communications on Applied Mathematics and Computation 1-36 DOI:10.1007/s42967-025-00492-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbgrallR, KumarH. Robust finite volume schemes for two-fluid plasma equations. J. Sci. Comput., 2014, 60(3): 584-611.

[2]

Agnihotri, J., Bhoriya, D., Kumar, H., Chandrashekhar, P., Balsara, D.S.: Second order divergence constraint preserving entropy stable finite difference schemes for ideal two-fluid plasma flow equations. J. Sci. Comput. 101, 46 (2024)

[3]

Amano, T.: A second-order divergence-constrained multidimensional numerical scheme for relativistic two-fluid electrodynamics. Astrophys. J. 831(1), 100 (2016). https://doi.org/10.3847/0004-637x/831/1/100

[4]

AmanoT, KirkJG. The role of superluminal electromagnetic waves in pulsar wind termination shocks. Astrophys. J., 2013, 770118.

[5]

Balsara, D.: Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser. 132(1), 83–101 (2001). https://doi.org/10.1086/318941

[6]

BalsaraDS. Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys., 2010, 229(6): 1970-1993.

[7]

BalsaraDS, AmanoT, GarainS, KimJ. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. J. Comput. Phys., 2016, 318: 169-200.

[8]

BalsaraDS, DumbserM, AbgrallR. Multidimensional HLLC Riemann solver for unstructured meshes-with application to Euler and MHD flows. J. Comput. Phys., 2014, 261: 172-208.

[9]

BalsaraDS, KimJ. A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys., 2016, 312: 357-384.

[10]

BarkovM, KomissarovSS, KorolevV, ZankovichA. A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc., 2014, 438(1): 704-716.

[11]

Bhoriya, D., Biswas, B., Kumar, H., Chandrashekhar, P.: Entropy stable discontinuous Galerkin schemes for two-fluid relativistic plasma flow equations J. Sci. Comput. 97(3), 72 (2023) https://doi.org/10.1007/s10915-023-02387-z

[12]

Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Zeitschrift für Angewandte Mathematik und Physik 71, 29 (2020). https://doi.org/10.1007/s00033-020-1250-8

[13]

BhoriyaD, KumarH, ChandrashekarP. High-order finite-difference entropy stable schemes for two-fluid relativistic plasma flow equations. J. Comput. Phys., 2023, 488112207

[14]

BirnJ, DrakeJF, ShayMA, RogersBN, DentonRE, HesseM, KuznetsovaM, MaZW, BhattacharjeeA, OttoA, PritchettPL. Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys., 2001, 106(A3): 3715-3719.

[15]

Bond, D.M., Wheatley, V., Samtaney, R.: Plasma flow simulation using the two-fluid model. In: 20th Australasian Fluid Mechanics Conference, Perth, Western Australia, pp. 5–8 (2016)

[16]

BrioM, WuCC. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 1988, 75(2): 400-422

[17]

ChandrashekarP, KumarR. Constraint preserving discontinuous Galerkin method for ideal compressible MHD on 2-D Cartesian grids. J. Sci. Comput., 2020, 84(2): 1-43.

[18]

Del ZannaL, BucciantiniN, LondrilloP. An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodyn. Astron. Astrophys., 2003, 400(2): 397-413.

[19]

DennisJE, SchnabelRB. Numerical methods for unconstrained optimization and nonlinear equations. Soc. Ind. Appl. Math., 1996.

[20]

FjordholmUS, MishraS, TadmorE. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal., 2012, 50(2): 544-573.

[21]

Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X

[22]

HakimA, LoverichJ, ShumlakU. A high resolution wave propagation scheme for ideal two-fluid plasma equations. J. Comput. Phys., 2006, 219(1): 418-442.

[23]

JiangB-N, WuJ, PovinelliLA. The origin of spurious solutions in computational electromagnetics. J. Comput. Phys., 1996, 125(1): 104-123

[24]

KomissarovSS. A Godunov-type scheme for relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc., 1999, 303(2): 343-366.

[25]

KomissarovSS. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc., 2007, 382(3): 995-1004.

[26]

KumarH, MishraS. Entropy stable numerical schemes for two-fluid plasma equations. J. Sci. Comput., 2012, 52(2): 401-425.

[27]

LoverichJ, HakimA, ShumlakU. A discontinuous Galerkin method for ideal two-fluid plasma equations. Commun. Comput. Phys., 2011, 9(2): 240-268.

[28]

MeenaAK, KumarH. Robust numerical schemes for Two-Fluid Ten-Moment plasma flow equations. Z. Angew. Math. Phys., 2019, 70(1): 1-30.

[29]

MignoneA, BodoG. An HLLC Riemann solver for relativistic flows–II. Magnetohydrodyn. Month. Notices R. Astron. Soc., 2006, 368(3): 1040-1054.

[30]

MunzC-D, OmnesP, SchneiderR, SonnendrückerE, VossU. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 2000, 161(2): 484-511.

[31]

OrszagSA, TangCM. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech., 1979, 90(1): 129-143.

[32]

PareschiL, RussoG. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput., 2005, 25(1): 129-155.

[33]

SchneiderV, KatscherU, RischkeDH, WaldhauserB, MaruhnJA, MunzCD. New algorithms for ultra-relativistic numerical hydrodynamics. J. Comput. Phys., 1993, 105(1): 92-107.

[34]

TadmorE. The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput., 1987, 4917991.

[35]

Wang, L., Hakim, A.H., Ng, J., Dong, C., Germaschewski, K.: Exact and locally implicit source term solvers for multifluid-Maxwell systems. J. Comput. Phys. 415, 109510 (2020). https://doi.org/10.1016/j.jcp.2020.109510

[36]

ZenitaniS, HesseM, KlimasA. Relativistic two-fluid simulations of guide field magnetic reconnection. Astrophys. J., 2009, 705(1): 907-913.

[37]

ZenitaniS, HesseM, KlimasA. Two-fluid magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J., 2009, 696(2): 1385-1401.

[38]

ZenitaniS, HesseM, KlimasA. Resistive magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. Lett., 2010, 716(2): L214-L218.

Funding

Department of Science and Technology, Ministry of Science and Technology, India(VJR/2018/000129)

Department of Atomic Energy, Government of India(12-R&D-TFR-5.01-0520)

RIGHTS & PERMISSIONS

Shanghai University

PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

/