An Adaptive Conforming Mixed Method for the Modified Transmission Eigenvalue Problem for Absorbing Medium
Jinhua Feng , Yanjun Li , Hai Bi , Yidu Yang
Communications on Applied Mathematics and Computation ›› : 1 -20.
An Adaptive Conforming Mixed Method for the Modified Transmission Eigenvalue Problem for Absorbing Medium
In this paper, we study the a posteriori error estimates of the conforming mixed method for the modified transmission eigenvalue problem proposed by Cogar et al. (Inverse Problems 33: 055010, 2017). We give the a posteriori error estimator of the approximate eigenpair, prove the reliability and efficiency of the estimator for the approximate eigenfunction, and present the reliability of the estimator for the approximate eigenvalue. We also implement adaptive computation and exhibit the numerical experiments which show that the approximate eigenvalues obtained by the adaptive computation reach the optimal convergence order.
Modified transmission eigenvalues / Conforming mixed method / A priori error estimates / A posteriori error estimates / Absorbing media / Adaptive method
| [1] |
|
| [2] |
|
| [3] |
Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Finite Element Methods (Part I). Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier Science Publishers, North-Holland (1991) |
| [4] |
|
| [5] |
Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G. (ed) Inside Out II, vol. 60, pp. 526–578. MSRI Publications (2012) |
| [6] |
|
| [7] |
Chen, L.: An innovative finite element methods package in MATLAB. Technical Report, University of California at Irvine, California (2009) |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Ern, A., Guermond, J.L.: Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs. Springer, Cham (2021) |
| [16] |
|
| [17] |
|
| [18] |
Grisvard, P.: Elliptic problems in nonsmooth domains. In: Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011) |
| [19] |
|
| [20] |
Liu, J., Liu, Y., Sun, J.: Reconstruction of modified transmission eigenvalues using Cauchy data. J. Inverse Ill-Posed Probl. 31(6), 905–919 (2023) |
| [21] |
Liu, Q., Li, T., Zhang, S.: A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media. Inverse Prob. 39(5), 055005 (2024) |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Wang, S., Bi, H., Li, Y., Yang, Y.: The finite element method for modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem. Appl. Math. Lett. 145, 108771 (2023) |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
Shanghai University
/
| 〈 |
|
〉 |