An Adaptive Conforming Mixed Method for the Modified Transmission Eigenvalue Problem for Absorbing Medium

Jinhua Feng , Yanjun Li , Hai Bi , Yidu Yang

Communications on Applied Mathematics and Computation ›› : 1 -20.

PDF
Communications on Applied Mathematics and Computation ›› : 1 -20. DOI: 10.1007/s42967-025-00489-z
Original Paper

An Adaptive Conforming Mixed Method for the Modified Transmission Eigenvalue Problem for Absorbing Medium

Author information +
History +
PDF

Abstract

In this paper, we study the a posteriori error estimates of the conforming mixed method for the modified transmission eigenvalue problem proposed by Cogar et al. (Inverse Problems 33: 055010, 2017). We give the a posteriori error estimator of the approximate eigenpair, prove the reliability and efficiency of the estimator for the approximate eigenfunction, and present the reliability of the estimator for the approximate eigenvalue. We also implement adaptive computation and exhibit the numerical experiments which show that the approximate eigenvalues obtained by the adaptive computation reach the optimal convergence order.

Keywords

Modified transmission eigenvalues / Conforming mixed method / A priori error estimates / A posteriori error estimates / Absorbing media / Adaptive method

Cite this article

Download citation ▾
Jinhua Feng, Yanjun Li, Hai Bi, Yidu Yang. An Adaptive Conforming Mixed Method for the Modified Transmission Eigenvalue Problem for Absorbing Medium. Communications on Applied Mathematics and Computation 1-20 DOI:10.1007/s42967-025-00489-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnJ, CaoW, ZhangZ. A novel mixed spectral method and error estimates for Maxwell transmission eigenvalue problems. SIAM J. Numer. Anal., 2024, 62(3): 1039-1066

[2]

AudibertL, CakoniF, HaddarH. New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data. Inverse Prob., 2017, 33 ArticleID: 125011

[3]

Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Finite Element Methods (Part I). Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier Science Publishers, North-Holland (1991)

[4]

CakoniF, ColtonD, HaddarH Inverse Scattering Theory and Transmission Eigenvalues, 2016 Philadephia SIAM Publications

[5]

Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G. (ed) Inside Out II, vol. 60, pp. 526–578. MSRI Publications (2012)

[6]

CakoniF, HaddarH. Transmission eigenvalues. Inverse Prob., 2013, 29 ArticleID: 100201

[7]

Chen, L.: An innovative finite element methods package in MATLAB. Technical Report, University of California at Irvine, California (2009)

[8]

CogarS, ColtonD, LeungY. The inverse spectral problem for transmission eigenvalues. Inverse Prob., 2017, 33 055010

[9]

CogarS, ColtonD, MengS, MonkP. Modified transmission eigenvalues in inverse scattering theory. Inverse Prob., 2017, 33 ArticleID: 125002

[10]

CogarS, MonkP. Modified electromagnetic transmission eigenvalues in inverse scattering theory. SIAM J. Math. Anal., 2020, 52(6): 6412-6441

[11]

ColtonD, KressR Inverse Acoustic and Electromagnetic Scattering Theory, 2019 4 New York Springer

[12]

ColtonD, MonkP, SunJ. Analytical and computational methods for transmission eigenvalues. Inverse Prob., 2010, 26 ArticleID: 045011

[13]

DaiX, HeL, ZhouA. Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA J. Numer. Anal., 2014, 35(4): 1934-1977

[14]

DörflerW. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 1996, 33(3): 1106-1124

[15]

Ern, A., Guermond, J.L.: Finite Elements II, Galerkin Approximation, Elliptic and Mixed PDEs. Springer, Cham (2021)

[16]

GintidesD, PallikarakisN, StratourasK. On the modified transmission eigenvalue problem with an artificial metamaterial background. Res. Math. Sci., 2021, 8: 40

[17]

GongB, SunJ, TurnerT, ZhengC. Finite element approximation of transmission eigenvalues for anisotropic media. Math. Comput., 2022, 91: 2517-2537

[18]

Grisvard, P.: Elliptic problems in nonsmooth domains. In: Classics in Applied Mathematics, vol. 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

[19]

LiY, YangY, BiH. The a priori and a posteriori error estimates for modified interior transmission eigenvalue problem in inverse scattering. Commun. Comput. Phys., 2023, 34: 503-529

[20]

Liu, J., Liu, Y., Sun, J.: Reconstruction of modified transmission eigenvalues using Cauchy data. J. Inverse Ill-Posed Probl. 31(6), 905–919 (2023)

[21]

Liu, Q., Li, T., Zhang, S.: A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media. Inverse Prob. 39(5), 055005 (2024)

[22]

MengJ. Virtual element method for the modified transmission eigenvalue problem in inverse scattering theory. Appl. Numer. Math., 2023, 192: 356-372

[23]

MengJ, MeiL. Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media. Math. Models Methods Appl. Sci., 2022, 32(08): 1493-1529

[24]

MonkP, SelgásV. Modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem. Res. Math. Sci., 2022, 9(1): 3

[25]

ScottLR, ZhangS. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput., 1990, 54: 483-493

[26]

SunJ, ZhouA Finite Element Methods for Eigenvalue Problems, 2017 New York CRC Press

[27]

VerfürthR A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques, 1996 Chichester Wiley

[28]

Wang, S., Bi, H., Li, Y., Yang, Y.: The finite element method for modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem. Appl. Math. Lett. 145, 108771 (2023)

[29]

WangS, BiH, YangY. The a posteriori error estimates and an adaptive algorithm of the FEM for transmission eigenvalues for anisotropic media. Comput. Math. Appl., 2023, 150: 156-169

[30]

WangS, BiH, YangY. The mixed discontinuous Galerkin method for transmission eigenvalues for anisotropic medium. J. Sci. Comput., 2023, 96(1): 22

[31]

XiY, JiX. A lowest-order mixed finite element method for the elastic transmission eigenvalue problem. Commun. Comput. Phys., 2020, 28(3): 1105-1132

[32]

XiY, JiX. A holomorphic operator function approach for the transmission eigenvalue problem of elastic waves. Commun. Comput. Phys., 2022, 32(2): 524-546

[33]

XieH, WuX. A multilevel correction method for interior transmission eigenvalue problem. J. Sci. Comput., 2017, 72: 586-604

[34]

YangY, BiH, LiH, HanJ. Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput., 2016, 38(3): 1383-1403

Funding

National Natural Science Foundation of China(11561014)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/