Numerical Solution of Partial Symmetric Generalized Eigenvalue Problems in Piezo Device Modal Analysis

Galina V. Muratova , Tatiana S. Martynova , Pavel A. Oganesyan

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3) : 1002 -1015.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3) : 1002 -1015. DOI: 10.1007/s42967-025-00487-1
Original Paper

Numerical Solution of Partial Symmetric Generalized Eigenvalue Problems in Piezo Device Modal Analysis

Author information +
History +
PDF

Abstract

We demonstrate how different computational approaches affect the performance of solving the generalized eigenvalue problem (GEP). The layered piezo device is studied for resonance frequencies using different meshes, sparse matrix representations, and numerical methods in COMSOL Multiphysics and ACELAN-COMPOS packages. Specifically, the matrix-vector and matrix-matrix product implementation for large sparse matrices is discussed. The shift-and-invert Lanczos method is used to solve the partial symmetric GEP numerically. Different solvers are compared in terms of the efficiency. The results of numerical experiments are presented.

Keywords

Partial symmetric generalized eigenvalue problem (GEP) / Modal analysis / Lanczos algorithm / Mathematical Sciences / Numerical and Computational Mathematics

Cite this article

Download citation ▾
Galina V. Muratova, Tatiana S. Martynova, Pavel A. Oganesyan. Numerical Solution of Partial Symmetric Generalized Eigenvalue Problems in Piezo Device Modal Analysis. Communications on Applied Mathematics and Computation, 2025, 7(3): 1002-1015 DOI:10.1007/s42967-025-00487-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaiZ-Z. Motivations and realizations of Krylov subspace methods for large sparse linear systems. Journal of Computational and Applied Mathematics, 2015, 283: 71-78.

[2]

Bai, Z.-Z., Chi, X.-B., Wang, Z.-Q.: A Lanczos-based projection method for symmetric indefinite linear systems, In: Proceedings of the Seventh China-Japan Seminar on Numerical Mathematics, pp. 1–8. Science Press, Beijing. (2006)

[3]

BaiZ-Z, GolubGH. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA Journal of Numerical Analysis, 2007, 2711-23.

[4]

BaiZ-Z, GolubGH, NgMK. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM Journal on Matrix Analysis and Applications, 2003, 243603-626.

[5]

BaiZ-Z, LiG-Q. Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA Journal of Numerical Analysis, 2003, 234561-580.

[6]

BaiZ-Z, PanJ-YMatrix Analysis and Computations, 2021PhiladelphiaSIAM.

[7]

BaiZ-Z, ParlettBN, WangZ-Q. On generalized successive overrelaxation methods for augmented linear systems. Numerische Mathematik, 2005, 102: 1-38.

[8]

BaiZ-Z, WangL, MuratovaGV. On relaxed greedy randomized augmented Kaczmarz methods for solving large sparse inconsistent linear systems. East Asian Journal on Applied Mathematics, 2022, 122323-332.

[9]

BaiZ-Z, WuW-T. On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM Journal on Scientific Computing, 2018, 401A592-A606.

[10]

BaiZ-Z, WuW-T. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Applied Mathematics Letters, 2018, 83: 21-26.

[11]

BaiZ-Z, WuW-T. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numerical Linear Algebra with Applications, 2019, 264e2237.

[12]

BaiZ-Z, WuW-T. On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems. SIAM Journal on Scientific Computing, 2021, 436A3892-A3911.

[13]

BaiZ-Z, WuW-T. Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Japan Journal of Industrial and Applied Mathematics, 2023, 4031421-1443.

[14]

BenziM, GolubGH, LiesenJ. Numerical solution of saddle point problems. Acta Numerica, 2005, 14: 1-137.

[15]

ChoiS-C, PaigeCC, SaundersMA. MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems. SIAM Journal on Scientific Computing, 2011, 3341810-1836.

[16]

CraigJE. The N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-step iteration procedures. Journal of Mathematics and Physics, 1955, 34164-73.

[17]

IkramovKh . Matrix pencils: theory, applications, numerical methods. Journal of Soviet Mathematics, 1993, 64: 783-853.

[18]

KorncoffAR, FenvesSJ. Symbolic generation of finite element stiffness matrices. Computers & Structures, 1979, 101/2119-124.

[19]

KrukierLA, MartynovaTS, BaiZ-Z. Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems. Journal of Computational and Applied Mathematics, 2009, 23213-16.

[20]

KurbatovaNV, NadolinDK, NasedkinAV, OganesyanPA, SolovievAN. Finite element approach for composite magneto-piezoelectric materials modeling in ACELAN-COMPOS package. Analysis and Modelling of Advanced Structures and Smart Systems, 2018, 181: 69-88

[21]

LanczosC. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 1950, 45: 255-281.

[22]

LuZ-R, LinG, WangL. Output-only modal parameter identification of structures by vision modal analysis. Journal of Sound and Vibration, 2021, 497: 115949.

[23]

MartynovaT, MuratovaG, OganesyanP, ShteinO. The numerical solution of large-scale generalized eigenvalue problems arising from finite-element modeling of electroelastic materials. Symmetry, 2023, 15: 171.

[24]

MeerbergenK. The Lanczos method with semi-definite inner product. BIT Numerical Mathematics, 2001, 41: 1069-1078.

[25]

Nour-OmidB, ParlettBN, EricssonT, JensenPS. How to implement the spectral transformation. Mathematics of Computation, 1987, 48: 663-673.

[26]

OrbanD, ArioliMIterative Methods for Symmetric Quasi-Definite Linear Systems, 2017PhiladelphiaSIAM.

[27]

PaigeCC, SaundersMA. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 1975, 12: 617-629.

[28]

ParlettBNThe Symmetric Eigenvalue Problem, 1998PhiladelphiaSIAM.

[29]

Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd ed. SIAM, Philadelphia (2011)

[30]

SaundersMA. Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numerical Mathematics, 1995, 35: 588-604.

[31]

Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)

[32]

VanderbeiRJ. Symmetric quasidefinite matrices. SIAM Journal on Optimization, 1995, 51100-113.

[33]

Yang, U.M.: Parallel Algebraic Multigrid Methods-High Performance Preconditioners. Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 6–12 (2006)

[34]

ZahidFB, ChaoO, KhooS. A review of operational modal analysis techniques for in-service modal identification. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42: 398.

[35]

Zhou, Y., Han, L.: Modal analysis of piezoelectric materials based on scanning laser vibration measurement. In: 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Nanjing, China, pp. 829–832 (2022) https://doi.org/10.1109/SPAWDA56268.2022.10045877

Funding

Russian Science Support Foundation(22-21-00318)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/