Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation II: High-Dimensional Problems

Yijin Gao , Songting Luo

Communications on Applied Mathematics and Computation ›› : 1 -26.

PDF
Communications on Applied Mathematics and Computation ›› : 1 -26. DOI: 10.1007/s42967-025-00484-4
Original Paper

Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation II: High-Dimensional Problems

Author information +
History +
PDF

Abstract

The semiclassical approximation for the space fractional Schrödinger equation (FSE) in high-dimensional spaces is derived, where the phase and amplitude of the wavefunction are proved to be determined by an eikonal equation and a transport equation, respectively. The formulations extend the results of the one-dimensional (1-D) problems studied in Gao et al. (Commun Appl Math Comput, 2024. https://doi.org/10.1007/s42967-024-00384-z). Similarly, these equations reduce to the eikonal and transport equations in the semiclassical approximation for the standard Schrödinger equation with integer-order derivatives as the fractional-order approaches two, and the Hamiltonian is consistent with that in the classical Hamilton-Jacobi approach. High-order Lax-Friedrichs schemes with Runge-Kutta time integration and weighted essentially non-oscillatory finite-difference approximations are adopted to solve the eikonal and transport equations numerically for their solutions such that they can be used to approximate the wavefunction, along with numerical experiments to demonstrate the effectiveness of the semiclassical approximation.

Keywords

Space fractional Schrödinger equation (FSE) / Semiclassical approximation / Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation / Eikonal equation / Transport equation / Mathematical Sciences / Pure Mathematics / Numerical and Computational Mathematics

Cite this article

Download citation ▾
Yijin Gao, Songting Luo. Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation II: High-Dimensional Problems. Communications on Applied Mathematics and Computation 1-26 DOI:10.1007/s42967-025-00484-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. United States Department of Commerce, National Bureau of Standards, USA (1964)

[2]

Al-RaeeiM, El-DaherMS. A numerical method for fractional Schrödinger equation of Lennard-Jones potential. Phys. Lett. A, 2019, 38326. 125831

[3]

Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184(12), 2621–2633 (2013)

[4]

Ashyralyev, A., Hicdurmaz, B.: On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition. Int. J. Comput. Math. 89(13/14), 1927–1936 (2012)

[5]

BaoW, JinS, MarkowichPA. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys., 2002, 1752487-524.

[6]

Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25(1), 27–64 (2003)

[7]

BayınS. On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys., 2012, 534. 042105

[8]

BayınS. Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys., 2016, 5712. 123501

[9]

BerengerJ-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994, 1142185-200.

[10]

Berry, M.V., Mount, K.: Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35(1), 315 (1972)

[11]

Biccari, U., Aceves, A.B.: WKB expansion for a fractional Schrödinger equation with applications to controllability. arXiv:1809.08099 (2018)

[12]

Bisci, G.M., Rădulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial. Differ. Equ. 54, 2985–3008 (2015)

[13]

Brumfiel, G.: Laser makes molecules super-cool. Nature (2010). https://doi.org/10.1038/news.2010.478

[14]

Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012). https://doi.org/10.1063/1.3701574

[15]

De OliveiraEC, CostaFS, VazJJr. The fractional Schrödinger equation for delta potentials. J. Math. Phys., 2010, 5112. 123517

[16]

DongJ, XuM. Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys., 2007, 487. 072105

[17]

DongJ, XuM. Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl., 2008, 34421005-1017.

[18]

EdekiS, AkinlabiG, AdeosunS. Analytic and numerical solutions of time-fractional linear Schrödinger equation. Commun. Math. Appl., 2016, 711-10

[19]

EngquistB, RunborgO. Computational high frequency wave propagation. Acta Numer., 2003, 12: 181-266.

[20]

Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

[21]

Gao, Y., Sacks, P., Luo, S.: Numerical solutions for space fractional Schrödinger equation through semiclassical approximation. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-024-00384-z

[22]

GuoX, XuM. Some physical applications of fractional Schrödinger equation. J. Math. Phys., 2006, 478. 082104

[23]

HeisenbergW. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys., 1925, 33: 879-893.

[24]

HerrmannR. The fractional symmetric rigid rotor. J. Phys. G Nucl. Part. Phys., 2007, 344607-625.

[25]

JiangG, PengD. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput., 2000, 2162126-2143.

[26]

JiangG, ShuC-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 1996, 1261202-228.

[27]

JiangX, QiH, XuM. Exact solutions of fractional Schrödinger-like equation with a nonlocal term. J. Math. Phys., 2011, 524. 042105

[28]

Kao, C., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004)

[29]

KatoriH, SchlipfS, WaltherH. Anomalous dynamics of a single ion in an optical lattice. Phys. Rev. Lett., 1997, 79: 2221-2224.

[30]

KwaśnickiM. Ten equivalent definitions of the fractional Laplace operator. Fract. Calcul. Appl. Anal., 2017, 2017-51.

[31]

LaskinN. Fractional Schrödinger equation. Phys. Rev. E, 2002, 66. 056108

[32]

Laskin, N.: Time fractional quantum mechanics. Chaos Solitons Fract. 102, 16–28 (2017)

[33]

Laskin, N.: Fractional Quantum Mechanics. World Scientific, Singapore (2018)

[34]

LenziE, RibeiroH, dos SantosM, RossatoR, MendesR. Time dependent solutions for a fractional Schrödinger equation with delta potentials. J. Math. Phys., 2013, 548. 082107

[35]

LimSC. Fractional derivative quantum fields at positive temperature. Physica A, 2006, 3632269-281.

[36]

LiuX, OsherS, ChanT. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 1994, 1151200-212.

[37]

LonghiS. Fractional Schrödinger equation in optics. Opt. Lett., 2015, 4061117-1120.

[38]

LuchkoY. Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys., 2013, 541. 012111

[39]

LuoS, QianJ. Factored singularities and high-order Lax-Friedrichs sweeping schemes for point-source traveltimes and amplitudes. J. Comput. Phys., 2011, 230124742-4755.

[40]

LuoS, QianJ, ZhaoH. Higher-order schemes for 3D first-arrival traveltimes and amplitudes. Geophysics, 2012, 772T47-T56.

[41]

MartinezAAn Introduction to Semiclassical and Microlocal Analysis, 2002New YorkSpringer.

[42]

Maslov, V.P., Fedoriuk, M.V.: Semi-classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, Dordredcht (1981)

[43]

Muleshkov, A., Nguyen, T.: Easy proof of the Jacobian for the n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n$$\end{document}-dimensional polar coordinates. Pi Mu Epsilon J. 14(4), 269–273 (2016)

[44]

MuslihSI, AgrawalOP, BaleanuD. A fractional Schrödinger equation and its solution. Int. J. Theor. Phys., 2010, 4981746-1752.

[45]

NaberM. Time fractional Schrödinger equation. J. Math. Phys., 2004, 4583339-3352.

[46]

OdibatZ, MomaniS, AlawnehA. Analytic study on time-fractional Schrödinger equations: exact solutions by GDTM. J. Phys. Conf. Ser., 2008, 96. 012066

[47]

OsherS, ShuC. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal., 1991, 284907-922.

[48]

Pozrikidis, C.: The Fractional Laplacian. Chapman and Hall/CRC, London (2016)

[49]

PurohitS. Solutions of fractional partial differential equations of quantum mechanics. Adv. Appl. Math. Mech., 2013, 55639-651.

[50]

Ros-OtonX, SerraJ. The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal., 2014, 2132587-628.

[51]

SchrödingerE. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev., 1926, 28: 1049-1070.

[52]

ShiH, ChenH. Multiple solutions for fractional Schrödinger equations. Electron. J. Differ. Equ., 2015, 2520151-11

[53]

Shu, C.-W.: High-order numerical methods for time-dependent Hamilton-Jacobi equations. In: Mathematics and Computation in Imaging Science and Information Processing, pp. 47–91. World Scientific, Singapore (2007)

[54]

TayurskiiD, LysogorskiyY. Quantum fluids in nanoporous media-effects of the confinement and fractal geometry. Chin. Sci. Bull., 2011, 56: 3617-3622.

[55]

WangS, XuM. Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys., 2007, 484. 043502

[56]

Zhang, Y., Zhao, H., Qian, J.: High-order fast sweeping methods for static Hamilton-Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)

[57]

ZhangY, ZhongH, BelićMR, AhmedN, ZhangY, XiaoM. Diffraction-free beams in fractional Schrödinger equation. Sci. Rep., 2016, 6123645.

Funding

Simons Foundation(714376)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/