A CWENO Large Time-Step Scheme for Hamilton-Jacobi Equations
Elisabetta Carlini , Roberto Ferretti , Silvia Preda , Matteo Semplice
Communications on Applied Mathematics and Computation ›› : 1 -29.
A CWENO Large Time-Step Scheme for Hamilton-Jacobi Equations
We propose a high-order numerical scheme for time-dependent first-order Hamilton-Jacobi-Bellman (HJB) equations. In particular, we propose to combine a semi-Lagrangian (SL) scheme with a Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction. The CWENO method provides a non-oscillatory, high-order reconstruction polynomial that allows efficient evaluations at multiple reconstruction points, while the SL method ensures stability without any time-step restrictions. Together, they form a particularly effective framework for solving HJB equations. We prove a convergence result in the case of state- and time-independent Hamiltonians. Numerical simulations are presented in space dimensions one and two, also for more general state- and time-dependent Hamiltonians, demonstrating superior performance in terms of CPU time gain compared with a semi-Lagrangian scheme coupled with Weighted Non-Oscillatory reconstructions.
Semi-Lagrangian (SL) schemes / Hamilton-Jacobi (HJ) equations / Central Weighted Essentially Non-Oscillatory (CWENO) methods
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser Boston, Inc., Boston (1997) |
| [5] |
Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38(1), 171–195 (2016) |
| [6] |
Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010). https://doi.org/10.1137/090762075 |
| [7] |
Bonaventura, L., Calzola, E., Carlini, E., Ferretti, R.: Second order fully semi-Lagrangian discretizations of advection-diffusion-reaction systems. J. Sci. Comput. 88, 23 (2021). https://doi.org/10.1007/s10915-021-01518-8 |
| [8] |
|
| [9] |
Calzola, E., Carlini, E., Dupuis, X., Silva, F.J.: A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations with oblique derivatives boundary conditions. Numer. Math. 153(1), 49–84 (2023) |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional Central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019) |
| [14] |
|
| [15] |
Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67(3), 315–344 (1994) |
| [16] |
Falcone, M., Ferretti, R.: Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175(2), 559–575 (2002) |
| [17] |
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2014) |
| [18] |
Falcone, M., Paolucci, G., Tozza, S.: Convergence of adaptive filtered schemes for first order evolutionary Hamilton-Jacobi equations. Numer. Math. 145(2), 271–311 (2020) |
| [19] |
Falcone, M., Paolucci, G., Tozza, S.: Multidimensional smoothness indicators for first-order Hamilton-Jacobi equations. J. Comput. Phys. 409, 109360 (2020). https://doi.org/10.1016/j.jcp.2020.109360 |
| [20] |
Ferretti, R.: Convergence of semi-Lagrangian approximations to convex Hamilton-Jacobi equations under (very) large Courant numbers. SIAM J. Numer. Anal. 40(6), 2240–2253 (2002). https://doi.org/10.1137/S0036142901388378 |
| [21] |
Galántai, A.: The Nelder-Mead simplex algorithm is sixty years old: new convergence results and open questions. Algorithms 17(11), 523 (2024). https://doi.org/10.3390/a17110523 |
| [22] |
Ha, Y., Kim, C.H., Yang, H., Yoon, J.: A sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 75, 1675–1700 (2018). https://doi.org/10.1007/s10915-017-0603-8 |
| [23] |
|
| [24] |
Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999). https://doi.org/10.1006/jcph.1998.6165 |
| [25] |
Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000). https://doi.org/10.1137/S106482759732455X |
| [26] |
Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) |
| [27] |
Kim, C.H., Ha, Y., Yang, H., Yoon, J.: A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations. Appl. Numer. Math. 165, 167–183 (2021). https://doi.org/10.1016/j.apnum.2021.01.020 |
| [28] |
|
| [29] |
Lin, C.T., Tadmor, E.: High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2163–2186 (2000) |
| [30] |
|
| [31] |
Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4), 308–313 (1965) |
| [32] |
Osher, S., Shu, C.-W.: High-order essentially non-oscillatory schemes for Hamilton-Jacobi equation. SIAM J. Numer. Anal. 28, 907–922 (1991) |
| [33] |
Samala, R.: L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1$$\end{document}-type smoothness indicators based weighted essentially nonoscillatory scheme for Hamilton-Jacobi equations. Int. J. Numer. Methods Fluid 92(12), 1927–1947 (2020). https://doi.org/10.1002/fld.4855 |
| [34] |
Samala, R., Biswas, B.: Arc length-based WENO scheme for Hamilton-Jacobi equations. Commun. Appl. Math. Comput. 3, 481–496 (2021). https://doi.org/10.1007/s42967-020-00091-5 |
| [35] |
|
| [36] |
Semplice, M., Visconti, G.: Efficient implementation of adaptive order reconstructions. J. Sci. Comput. 83, 6 (2020). https://doi.org/10.1007/s10915-020-01156-6 |
| [37] |
Zennaro, M.: Natural continuous extensions of Runge-Kutta methods. Math. Comput. 46(173), 119–133 (1986). https://doi.org/10.1090/S0025-5718-1986-0815835-1 |
| [38] |
Zheng, F., Shu, C.-W., Qiu, J.: High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes. Comput. Fluids 183, 53–65 (2019). https://doi.org/10.1016/j.compfluid.2019.02.010 |
| [39] |
|
| [40] |
|
| [41] |
Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations. Numer. Methods PDEs 33(4), 1095–1113 (2017). https://doi.org/10.1002/num.22133 |
| [42] |
Zhu, J., Qiu, J.: A new type of high-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. Commun. Comput. Phys. 27(3), 897–920 (2020). https://doi.org/10.4208/cicp.OA-2018-0156 |
The Author(s)
/
| 〈 |
|
〉 |