Interpolated Galerkin Finite Elements on Rectangular and Cuboid Meshes for the Biharmonic Equation

Mengjiao Pan , Tatyana Sorokina , Shangyou Zhang

Communications on Applied Mathematics and Computation ›› : 1 -13.

PDF
Communications on Applied Mathematics and Computation ›› :1 -13. DOI: 10.1007/s42967-024-00473-z
Original Paper

Interpolated Galerkin Finite Elements on Rectangular and Cuboid Meshes for the Biharmonic Equation

Author information +
History +
PDF

Abstract

A new Galerkin finite element for the biharmonic equation is constructed on 2D rectangular and 3D cuboid meshes. In this

C 1
-
Q k
(
k 4
) interpolated Galerkin finite element construction, all unknowns associated with the interior of each element are determined by the direct interpolation of the right-hand-side function, and the rest of the unknowns, associated with the boundary of each element, are determined by solving the remaining linear equations of the Galerkin projection. In comparison with the traditional finite element method in two dimensions, our method reduces the number of unknowns from
O ( k 2 )
to O(k). Additionally, the method reduces the condition number drastically as it requires only 1% of the computer time, compared with the standard finite elements, in several numerical tests. We prove the existence and uniqueness of the solution and the optimal order of convergence. We confirm the theory by numerical tests in two dimensions and three dimensions.

Cite this article

Download citation ▾
Mengjiao Pan, Tatyana Sorokina, Shangyou Zhang. Interpolated Galerkin Finite Elements on Rectangular and Cuboid Meshes for the Biharmonic Equation. Communications on Applied Mathematics and Computation 1-13 DOI:10.1007/s42967-024-00473-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. 3rd ed. In: Texts in Applied Mathematics, 15. Springer, New York (2008)

[2]

Hu J, Huang Y, Zhang S. The lowest order differentiable finite element on rectangular grids. SIAM Num. Anal., 2011, 49(4): 1350-1368.

[3]

Hu J, Zhang S. The minimal conforming H k \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^k$$\end{document} finite element spaces on R n \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{R} ^n$$\end{document} rectangular grids. Math. Comp., 2015, 84(292): 563-579.

[4]

Huang Y, Zhang S. Supercloseness of the divergence-free finite element solutions on rectangular grids. Commun. Math. Stat., 2013, 1(2): 143-162.

[5]

Scott LR, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 1990, 54: 483-493.

[6]

Shu S, Yu H, Huang Y. Superconvergence and high accuracy combination formula of bicubic spline element for plate problems. Numer. Math. Sin., 1998, 20(2): 167-174

[7]

Sorokina T, Zhang S. Conforming harmonic finite elements on the Hsieh-Clough-Tocher split of a triangle. Int. J. Numer. Anal. Model., 2020, 17(1): 54-67

[8]

Sorokina T, Zhang S. Conforming and nonconforming harmonic finite elements. Appl. Anal., 2020, 99(4): 569-584.

[9]

Sorokina T, Zhang S. An interpolated Galerkin finite element method for the Poisson equation. J. Sci. Comput., 2022, 92(2): 47.

[10]

Sorokina, T., Zhang, S. Neamtu, M., Fasshauer, G. E., Schumaker, L. L., Neamtu, M., Schumaker, L. L., Fasshauer, G. E.: Trivariate Interpolated Galerkin Finite Elements for the Poisson Equation, Approximation Theory XVI, pp. 237–249, Springer Proc. Math. Stat., 336, Springer, Cham (2021)

[11]

Yan N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, 2008 Beijing Science Press

[12]

Zhang S. On the full C 1 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_1$$\end{document}- Q k \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q_k$$\end{document} finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech., 2010, 2: 701-721.

RIGHTS & PERMISSIONS

Shanghai University

PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

/