Energy-Conserving Hermite Methods for Maxwell’s Equations

Daniel Appelö , Thomas Hagstrom , Yann-Meing Law

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3) : 1146 -1173.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3) : 1146 -1173. DOI: 10.1007/s42967-024-00469-9
Original Paper

Energy-Conserving Hermite Methods for Maxwell’s Equations

Author information +
History +
PDF

Abstract

Energy-conserving Hermite methods for solving Maxwell’s equations in dielectric and dispersive media are described and analyzed. In three space dimensions, methods of order 2m to

2m+2
require
(m+1)3
degrees-of-freedom per node for each field variable and can be explicitly marched in time with steps independent of m. We prove the stability for time steps limited only by domain-of-dependence requirements along with error estimates in a special semi-norm associated with the interpolation process. Numerical experiments are presented which demonstrate that Hermite methods of very high order enable the efficient simulation of the electromagnetic wave propagation over thousands of wavelengths.

Keywords

Maxwell’s equations / High-order methods / Hermite methods

Cite this article

Download citation ▾
Daniel Appelö, Thomas Hagstrom, Yann-Meing Law. Energy-Conserving Hermite Methods for Maxwell’s Equations. Communications on Applied Mathematics and Computation, 2025, 7(3): 1146-1173 DOI:10.1007/s42967-024-00469-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AppelöD, ChenR, HagstromT. A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with applications to Maxwell’s equations. J. Comput. Phys., 2013, 257: 501-520

[2]

Appelö, D., Hagstrom, T.: Solving PDEs with Hermite interpolation. In: Lecture Notes in Computational Science, pp. 31–49. Springer, Berlin (2015)

[3]

AppelöD, HagstromT, VargasA. Hermite methods for the scalar wave equation. SIAM J. Sci. Comput., 2018, 40: 3902-3927.

[4]

BanksJW, BucknerB, HenshawW, JenkinsonM, KildeshevA, KovacicG, ProkopevaL, SchwendemanD. A high-order accurate scheme for Maxwell’s equations with a Generalized Dispersive Material (GDM) model and material interfaces. J. Comput. Phys., 2020, 412. 109424

[5]

BokilV, GibsonN. Convergence analysis of Yee schemes for Maxwell’s equations in Debye and Lorentz dispersive media. Int. J. Numer. Anal. Mod., 2014, 11: 657-687

[6]

ByrneGD, HindmarshAC. A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw., 1975, 1: 71-96.

[7]

GoodrichJ, HagstromT, LorenzJ. Hermite methods for hyperbolic initial-boundary value problems. Math. Comput., 2006, 75: 595-630.

[8]

HairerE, NorsettS, WannerGSolving Ordinary Differential Equations I. Nonstiff Problems, 1992New YorkSpringer

[9]

HollandR. Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates. IEEE Trans. Nucl. Sci., 1983, 30: 4589-4591.

[10]

JiangY, SakkaplangkulP, BokilV, ChengY, LiF. Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell’s equations in linear Lorentz media. J. Comput. Phys., 2019, 394: 100-135.

[11]

JolyPAinsworthM, DaviesP, DuncanD, MartinP, RynneB. Variational methods for time-dependent wave propagation problems. Topics in Computational Wave Propagation, 2003BerlinSpringer201-264.

[12]

Law, Y.-M., Appelö, D.: The Hermite-Taylor correction function method for Maxwell’s equations. Commun. Appl. Math. Comput. 7, 347–371 (2023). https://doi.org/10.1007/s42967-023-00287-5

[13]

Loya, A.A., Appelö, D., Henshaw, W.D.: High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions. J. Comput. Phys. 522, 113597 (2025)

[14]

MaiW, CampbellSD, WhitingEB, KangL, WernerPL, ChenY, WernerDH. Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis. Opt. Mater. Express, 2020, 10: 2542-2559.

[15]

Palik, E.D.: Handbook of Optical Constants of Solids II. Academic Press, San Diego (1998)

[16]

ProkopevaL, BornemanJ, KildishevA. Optical dispersion models for time-domain modeling of metal-dielectric nanostructures. IEEE Trans. Magn., 2011, 47: 1150-1153.

[17]

QiangR, BaoH, CampbellSD, ProkopevaLJ, KildishevAV, WernerDH. Continuous-discontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics. Opt. Express, 2018, 26: 29005-29016.

[18]

Shi, C., Li, J., Shu, C-W.: Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes. J. Comput. Appl. Math. 342, 147–163 (2018)

[19]

Vargas, A., Chan, J., Hagstrom, T., Warburton, T.: GPU acceleration of Hermite methods for simulation of wave propagation. In: Lecture Notes in Computational Science, pp. 357–368. Springer, Berlin (2017)

[20]

VargasA, HagstromT, ChanJ, WarburtonT. Leapfrog time-stepping for Hermite methods. J. Sci. Comput., 2019, 30: 289-314.

[21]

YangW, HuangY, LiJ. Developing a time-domain finite element method for the Lorentz metamaterial model and applications. J. Sci. Comput., 2016, 68: 438-463.

Funding

National Science Foundation(DMS-2309687)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/