Action-Angle Variables for the Lie-Poisson Hamiltonian Systems Associated with the Manakov Equation

Xue Geng , Liang Guan

Communications on Applied Mathematics and Computation ›› : 1 -17.

PDF
Communications on Applied Mathematics and Computation ›› : 1 -17. DOI: 10.1007/s42967-024-00465-z
Original Paper

Action-Angle Variables for the Lie-Poisson Hamiltonian Systems Associated with the Manakov Equation

Author information +
History +
PDF

Abstract

In this study, we introduce two finite-dimensional Lie-Poisson Hamiltonian systems related to the Manakov equation through the nonlinearization method. Additionally, we apply the separation of variables on the common level set of Casimir functions to analyze these systems, which are related to the non-hyperelliptic algebraic curve. Ultimately, we construct the action-angle variables for these systems based on the Hamilton-Jacobi theory and derive the Jacobi inversion problem for the Manakov equation.

Cite this article

Download citation ▾
Xue Geng, Liang Guan. Action-Angle Variables for the Lie-Poisson Hamiltonian Systems Associated with the Manakov Equation. Communications on Applied Mathematics and Computation 1-17 DOI:10.1007/s42967-024-00465-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams MR, Harnad J, Hurtubise J. Darboux coordinates and Liouville-Arnold integration in loop algebras. Commun. Math. Phys., 1993, 155: 385-413.

[2]

Alfinito E, Leo M, Leo RA, Soliani G, Solombrino L. Symmetry properties and exact patterns in birefrigent optical fibers. Phys. Rev. E, 1995, 53: 3159-3165.

[3]

Babelon O, Bernard D, Talon M. Introduction to Classical Integrable Systems, 2003 Cambridge Cambridge University Press.

[4]

Bertola M, Korotkin D, Norton C. Symplectic geometry of the moduli space of projective structures in homological coordinates. Invent. Math., 2017, 210: 759-814.

[5]

Buchstaber VM, Enolskii VZ, Leykin DV. Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations. Funct. Anal. Appl., 2000, 34: 159-171.

[6]

Cao CW, Wu YT, Geng XG. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system. J. Math. Phys., 1999, 40: 3948-3970.

[7]

Chen ST, Zhou RG. An integrable decomposition of the Manakov equation. Comput. Appl. Math., 2012, 31(1): 1-18.

[8]

Cherednik IV. Differential equations of the Baker-Akhiezer functions of algebraic curves. Funct. Anal. Appl., 1978, 12: 195-203.

[9]

Christiansen PL, Eilbeck JC, Enolskii VZ, Kostov NA. Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A., 1995, 451: 685-700.

[10]

Christiansen PL, Eilbeck JC, Enolskii VZ, Kostov NA. Quasi-periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type. Proc. R. Soc. Lond. A, 2000, 456: 2263-2281.

[11]

Constantin A, Ivanov R. Poisson structure and action-angle variables for the Camassa-Holm equation. Lett. Math. Phys., 2006, 76: 93-108.

[12]

Dickey LA. Integrable nonlinear equations and Liouville’s theorem (I). Commun. Math. Phys., 1981, 82: 345-360.

[13]

Dickey LA. Soliton Equations and Hamiltonian Systems, 2003 Singapore World Scientific.

[14]

Du DL, Geng X. On the relationship between the classical Dicke-Jaynes-Cummings-Gaudin model and the nonlinear Schrödinger equation. J. Math. Phys., 2013, 54. 053510

[15]

Eilbeck JC, Enolskii VZ, Kostov NA. Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations. J. Math. Phys., 2000, 41: 8236-8248.

[16]

Elgin JN, Enolski VZ, Its AR. Effective integration of the nonlinear vector Schrödinger equation. Physica D, 2007, 225: 127-152.

[17]

Gekhtman MI. Separation of variables in the classical SL ( N ) \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${SL}({N})$$\end{document} magnetic chain. Commun. Math. Phys., 1995, 167: 593-605.

[18]

Geng XG, Dai HH. Nonlinearization of the 3 × 3 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3\times 3$$\end{document} matrix eigenvalue problem related to coupled nonlinear Schrödinger equations. J. Math. Anal. Appl., 1999, 233(1): 26-55.

[19]

Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates and partially coherent solitons. Phys. Rev. E, 2003, 67. 046617

[20]

Krichever IM. Algebraic-geometric construction of the Zaharov-Shabat equations and their periodic solutions. Dokl. Akad. Nauk SSSR, 1976, 227: 394-397

[21]

Ma WX, Zeng YB. Binary constrained flows and separation of variables for soliton equations. Anziam. J., 2002, 44(1): 129-139.

[22]

Manakov SV. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP, 1974, 38(2): 248-253

[23]

Menyuk CR. Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quantum Electron., 1987, 23(2): 174-176.

[24]

Nakkeeran K. Exact soliton solutions for a family of N \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${N}$$\end{document} coupled nonlinear Schrödinger equations in optical fiber media. Phys. Rev. E, 2000, 62: 1313-1321.

[25]

Ohta Y, Wang DS, Yang JK. General N \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${N}$$\end{document}-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math., 2011, 127(4): 345-371.

[26]

Polymilis C, Hizanidis K, Frantzeskakis DJ. Phase plane Stäckel potential dynamics of the Manakov system. Phys. Rev. E, 1998, 58: 1112-1124.

[27]

Porubov AV, Parker DF. Some general periodic solutions to coupled nonlinear Schrödinger equation. Wave Mot., 1999, 29: 97-109.

[28]

Pulov IV, Uzunov IM, Chakarov EJ. Solutions and laws of conservation for coupled nonlinear Schrödinger equations: Lie group analysis. Phys. Rev. E, 1998, 57: 3468-3477.

[29]

Radhakrishnan R, Lakshmanan M. Bright and dark soliton solutions to coupled nonlinear Schrödinger equations. J. Phys. A Math. Gen., 1995, 28(9): 2683-2692.

[30]

Sahadevan R, Tamizhmani KM, Lakshmanan M. Painlevè analysis and integrability of coupled nonlinear Schrödinger equations. J. Phys. A Math. Gen., 1986, 19(10): 1783-1791.

[31]

Scott, D.R.D.: Classical functional Bethe ansatz for SL( N \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${N}$$\end{document}): separation of variables for the magnetic chain. J. Math. Phys. 35, 5831–5843 (1994)

[32]

Sklyanin EK. Separation of variables in the classical integrable SL ( 3 ) \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${SL}(3)$$\end{document} magnetic chain. Commun. Math. Phys., 1992, 150: 181-191.

[33]

Sklyanin EK. Separation of variables. New Trends. Prog. Theor. Phys. Suppl., 1995, 118: 35-60.

[34]

Tsuchida T. N \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N$$\end{document}-soliton collision in the Manakov model. Prog. Theor. Phys., 2004, 111(2): 151-182.

[35]

Wadati M, Iizuka T, Hisakado M. A coupled nonlinear Schrödinger equation and optical solitons. J. Phys. Soc. Jpn., 1992, 61: 2241-2245.

[36]

Wu LH, Geng XG, He GL. Algebro-geometric solutions to the Manakov hierarchy. Appl. Anal., 2016, 95(4): 769-800.

[37]

Wu LH, He GL, Geng XG. The full positive flows of Manakov hierarchy, Hamiltonian structure, conservation laws. Appl. Math. Comput., 2013, 220(1): 20-37

[38]

Xu T, Tian B. Bright N \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${N}$$\end{document}-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A Math. Theor., 2010, 43. 245205

[39]

Yang JK. Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys. Rev. E, 1999, 59: 2393-2405.

[40]

Zakharov VE, Schulman EI. To the integrability of the system of two coupled nonlinear Schrödinger equations. Physica D, 1982, 4(2): 270-274.

[41]

Zeng YB. Separation of variables for the constrained flows. J. Math. Phys., 1997, 38: 321-329.

Funding

National Natural Science Foundation of China(12001013)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/