Multiderivative Runge-Kutta Flux Reconstruction for Hyperbolic Conservation Laws

Arpit Babbar , Praveen Chandrashekar

Communications on Applied Mathematics and Computation ›› : 1 -41.

PDF
Communications on Applied Mathematics and Computation ›› :1 -41. DOI: 10.1007/s42967-024-00463-1
Original Paper
research-article

Multiderivative Runge-Kutta Flux Reconstruction for Hyperbolic Conservation Laws

Author information +
History +
PDF

Abstract

We extend the fourth-order, two-stage multiderivative Runge-Kutta (MDRK) scheme to the flux reconstruction (FR) framework by writing both stages in terms of a time-averaged flux and then using the approximate Lax-Wendroff (LW) procedure to compute the time-averaged flux. Numerical flux is carefully constructed to enhance Fourier CFL stability and accuracy. A subcell-based blending limiter is developed for the MDRK scheme which ensures that the limited scheme is provably admissibility preserving. Along with being admissibility preserving, the blending scheme is constructed to minimize dissipation errors using Gauss-Legendre (GL) solution points and performing the MUSCL-Hancock (MH) reconstruction on subcells. The accuracy enhancement of the blending scheme is numerically verified on compressible Euler equations, with test cases involving shocks and small-scale structures.

Keywords

Conservation laws / Hyperbolic PDE / Multiderivative Runge-Kutta (MDRK) / Flux reconstruction (FR) / Admissibility preservation / Shock capturing / 65M22 / 65M60 / 65M70

Cite this article

Download citation ▾
Arpit Babbar, Praveen Chandrashekar. Multiderivative Runge-Kutta Flux Reconstruction for Hyperbolic Conservation Laws. Communications on Applied Mathematics and Computation 1-41 DOI:10.1007/s42967-024-00463-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AttigN, GibbonP, LippertT. Trends in supercomputing: the European path to exascale. Comput. Phys. Commun., 2011, 182: 2041-2046.

[2]

Babbar, A., Chandrashekar, P.: Generalized framework for admissibility preserving Lax-Wendroff flux reconstruction for hyperbolic conservation laws with source terms. arXiv:2402.01442 (2024)

[3]

Babbar, A., Chandrashekar, P.: Lax-Wendroff flux reconstruction on adaptive curvilinear meshes with error based time stepping for hyperbolic conservation laws. arXiv:2402.11926 (2024)

[4]

Babbar, A., Chandrashekar, P., Kenettinkara, S.K.: Tenkai.jl: temporal discretizations of high-order PDE solvers. https://github.com/Arpit-Babbar/Tenkai.jl (2023)

[5]

BabbarA, KenettinkaraSK, ChandrashekarP. Lax-Wendroff flux reconstruction method for hyperbolic conservation laws. J. Comput. Phys., 2022, 463. 111423

[6]

Babbar, A., Kenettinkara, S.K., Chandrashekar, P.: Admissibility preserving subcell limiter for Lax-Wendroff flux reconstruction. J. Sci. Comput. 99, 31 (2024)

[7]

Berthon, C.: Why the MUSCL-Hancock scheme is $L^1$-stable. Numer. Math. 104, 27–46 (2006)

[8]

BürgerR, KenettinkaraSK, ZoríoD. Approximate Lax-Wendroff discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Math. Appl., 2017, 74: 1288-1310.

[9]

CarrilloH, MaccaE, ParésC, RussoG, ZoríoD. An order-adaptive compact approximation Taylor method for systems of conservation laws. J. Comput. Phys., 2021, 438. 110358

[10]

CicchinoA, NadarajahS, Del Rey FernándezDC. Nonlinearly stable flux reconstruction high-order methods in split form. J. Comput. Phys., 2022, 458. 111094

[11]

Cockburn, B., Karniadakis, G.E., Shu, C.-W., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T.: Discontinuous Galerkin methods theory, computation and applications. In: Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin, Heidelberg (2000)

[12]

De Grazia, D., Mengaldo, G., Moxey, D., Vincent, P.E., Sherwin, S.J.: Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. International Journal for Numerical Methods in Fluids 75(12), 860–877 (2014)

[13]

Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)

[14]

GassnerG, DumbserM, HindenlangF, MunzC-D. Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys., 2011, 230: 4232-4247.

[15]

GlimmJ, KlingenbergC, McBryanO, PlohrB, SharpD, YanivS. Front tracking and two-dimensional Riemann problems. Adv. Appl. Math., 1985, 6: 259-290.

[16]

GodunovSK, BohachevskyI. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij Sbornik, 1959, 47(89): 271-306

[17]

Hennemann, S., Rueda-Ramírez, A.M., Hindenlang, F.J., Gassner, G.J.: A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. J. Comput. Phys. 426, 109935 (2021)

[18]

Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, 25–28 June 2007, Miami, FL. AIAA 2007–4079 (2007)

[19]

LaxPD, LiuX-D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput., 1998, 19: 319-340.

[20]

Li, J., Du, Z.: A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers i. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38, 3046–3069 (2016)

[21]

LöhnerR. An adaptive finite element scheme for transient problems in CFD. Comput. Methods Appl. Mech. Eng., 1987, 61: 323-338.

[22]

Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W., Carrington, L., Chiu, G., Colwell, R., Dally, W., Dongarra, J., Geist, A., Haring, R., Hittinger, J., Hoisie, A., Klein, D.M., Kogge, P., Lethin, R., Sarkar, V., Schreiber, R., Shalf, J., Sterling, T., Stevens, R., Bashor, J., Brightwell, R., Coteus, P., Debenedictus, E., Hiller, J., Kim, K.H., Langston, H., Murphy, R.M., Webster, C., Wild, S., Grider, G., Ross, R., Leyffer, S., Laros III, J.: DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges. United States (2014) https://doi.org/10.2172/1222713

[23]

Obrechkoff, N.: Neue Quadraturformeln. Abhandlungen der Preussischen Akademie der Wissenschaften. Math.-naturw. Klasse, Akad. d. Wissenschaften (1940)

[24]

PanL, LiJ, XuK. A few benchmark test cases for higher-order Euler solvers. Numer. Math. Theory Methods Appl., 2016, 10: 711-736.

[25]

QiuJ, DumbserM, ShuC-W. The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng., 2005, 194: 4528-4543.

[26]

Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)

[27]

RanochaH, DalcinL, ParsaniM, KetchesonDI. Optimized Runge-Kutta methods with automatic step size control for compressible computational fluid dynamics. Commun. Appl. Math. Comput., 2021, 4: 1191-1228.

[28]

Ranocha, H., Schlottke-Lakemper, M., Winters, A.R., Faulhaber, E., Chan, J., Gassner, G.: Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing In: Proceedings of the JuliaCon Conferences, 1, p. 77 (2022)

[29]

Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems. Ann Arbor, Michigan, Oct. , Los Alamos Scientific Lab., N.Mex., USA (1973)

[30]

Rueda-Ramírez, A., Gassner, G.: A subcell finite volume positivity-preserving limiter for DGSEM discretizations of the Euler equations. In: 14th WCCM-ECCOMAS Congress, CIMNE (2021)

[31]

RusanovV. The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys., 1962, 1: 304-320.

[32]

SealD , GüçlüY, ChristliebA. High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput., 2013, 60: 101-140.

[33]

Sedov, L.: Chapter iv — One-dimensional unsteady motion of a gas. In: Sedov, L. (eds) Similarity and Dimensional Methods in Mechanics. pp. 146–304. Academic Press (1959)

[34]

Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

[35]

Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

[36]

Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

[37]

TangH, LiuT. A note on the conservative schemes for the Euler equations. J. Comput. Phys., 2006, 218: 451-459.

[38]

TitarevVA, ToroEF. ADER: arbitrary high order Godunov approach. J. Sci. Comput., 2002, 17: 609-618.

[39]

Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004)

[40]

TrojakW, WitherdenFD. A new family of weighted one-parameter flux reconstruction schemes. Comput. Fluids, 2021, 222. 104918

[41]

VincentPE, CastonguayP, JamesonA. A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput., 2011, 47: 50-72.

[42]

Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)

[43]

WoodwardP, ColellaP. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 1984, 54: 115-173.

[44]

ZhangT, ZhengY. Conjecture on the structure of solutions of the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal., 1990, 21: 593-630.

[45]

ZhangT, ZhengY. Exact spiral solutions of the two-dimensional Euler equations. Discrete Contin. Dynam. Syst., 1997, 3: 117-133.

[46]

ZhangX, ShuC-W. On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys., 2010, 229: 3091-3120.

[47]

Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

[48]

Zorío, D., Baeza, A., Mulet, P.: An approximate Lax-Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2017)

Funding

Tata Institute of Fundamental Research (TIFR)

RIGHTS & PERMISSIONS

The Author(s)

PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

/