Multiderivative Runge-Kutta Flux Reconstruction for Hyperbolic Conservation Laws
Arpit Babbar , Praveen Chandrashekar
Communications on Applied Mathematics and Computation ›› : 1 -41.
Multiderivative Runge-Kutta Flux Reconstruction for Hyperbolic Conservation Laws
We extend the fourth-order, two-stage multiderivative Runge-Kutta (MDRK) scheme to the flux reconstruction (FR) framework by writing both stages in terms of a time-averaged flux and then using the approximate Lax-Wendroff (LW) procedure to compute the time-averaged flux. Numerical flux is carefully constructed to enhance Fourier CFL stability and accuracy. A subcell-based blending limiter is developed for the MDRK scheme which ensures that the limited scheme is provably admissibility preserving. Along with being admissibility preserving, the blending scheme is constructed to minimize dissipation errors using Gauss-Legendre (GL) solution points and performing the MUSCL-Hancock (MH) reconstruction on subcells. The accuracy enhancement of the blending scheme is numerically verified on compressible Euler equations, with test cases involving shocks and small-scale structures.
Conservation laws / Hyperbolic PDE / Multiderivative Runge-Kutta (MDRK) / Flux reconstruction (FR) / Admissibility preservation / Shock capturing / 65M22 / 65M60 / 65M70
| [1] |
|
| [2] |
Babbar, A., Chandrashekar, P.: Generalized framework for admissibility preserving Lax-Wendroff flux reconstruction for hyperbolic conservation laws with source terms. arXiv:2402.01442 (2024) |
| [3] |
Babbar, A., Chandrashekar, P.: Lax-Wendroff flux reconstruction on adaptive curvilinear meshes with error based time stepping for hyperbolic conservation laws. arXiv:2402.11926 (2024) |
| [4] |
Babbar, A., Chandrashekar, P., Kenettinkara, S.K.: Tenkai.jl: temporal discretizations of high-order PDE solvers. https://github.com/Arpit-Babbar/Tenkai.jl (2023) |
| [5] |
|
| [6] |
Babbar, A., Kenettinkara, S.K., Chandrashekar, P.: Admissibility preserving subcell limiter for Lax-Wendroff flux reconstruction. J. Sci. Comput. 99, 31 (2024) |
| [7] |
Berthon, C.: Why the MUSCL-Hancock scheme is $L^1$-stable. Numer. Math. 104, 27–46 (2006) |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Cockburn, B., Karniadakis, G.E., Shu, C.-W., Griebel, M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T.: Discontinuous Galerkin methods theory, computation and applications. In: Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin, Heidelberg (2000) |
| [12] |
De Grazia, D., Mengaldo, G., Moxey, D., Vincent, P.E., Sherwin, S.J.: Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. International Journal for Numerical Methods in Fluids 75(12), 860–877 (2014) |
| [13] |
Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008) |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Hennemann, S., Rueda-Ramírez, A.M., Hindenlang, F.J., Gassner, G.J.: A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations. J. Comput. Phys. 426, 109935 (2021) |
| [18] |
Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, 25–28 June 2007, Miami, FL. AIAA 2007–4079 (2007) |
| [19] |
|
| [20] |
Li, J., Du, Z.: A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers i. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38, 3046–3069 (2016) |
| [21] |
|
| [22] |
Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W., Carrington, L., Chiu, G., Colwell, R., Dally, W., Dongarra, J., Geist, A., Haring, R., Hittinger, J., Hoisie, A., Klein, D.M., Kogge, P., Lethin, R., Sarkar, V., Schreiber, R., Shalf, J., Sterling, T., Stevens, R., Bashor, J., Brightwell, R., Coteus, P., Debenedictus, E., Hiller, J., Kim, K.H., Langston, H., Murphy, R.M., Webster, C., Wild, S., Grider, G., Ross, R., Leyffer, S., Laros III, J.: DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges. United States (2014) https://doi.org/10.2172/1222713 |
| [23] |
Obrechkoff, N.: Neue Quadraturformeln. Abhandlungen der Preussischen Akademie der Wissenschaften. Math.-naturw. Klasse, Akad. d. Wissenschaften (1940) |
| [24] |
|
| [25] |
|
| [26] |
Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003) |
| [27] |
|
| [28] |
Ranocha, H., Schlottke-Lakemper, M., Winters, A.R., Faulhaber, E., Chan, J., Gassner, G.: Adaptive numerical simulations with Trixi.jl: a case study of Julia for scientific computing In: Proceedings of the JuliaCon Conferences, 1, p. 77 (2022) |
| [29] |
Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. In: National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems. Ann Arbor, Michigan, Oct. , Los Alamos Scientific Lab., N.Mex., USA (1973) |
| [30] |
Rueda-Ramírez, A., Gassner, G.: A subcell finite volume positivity-preserving limiter for DGSEM discretizations of the Euler equations. In: 14th WCCM-ECCOMAS Congress, CIMNE (2021) |
| [31] |
|
| [32] |
|
| [33] |
Sedov, L.: Chapter iv — One-dimensional unsteady motion of a gas. In: Sedov, L. (eds) Similarity and Dimensional Methods in Mechanics. pp. 146–304. Academic Press (1959) |
| [34] |
Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003) |
| [35] |
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989) |
| [36] |
Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002) |
| [37] |
|
| [38] |
|
| [39] |
Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004) |
| [40] |
|
| [41] |
|
| [42] |
Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015) |
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012) |
| [48] |
Zorío, D., Baeza, A., Mulet, P.: An approximate Lax-Wendroff-type procedure for high order accurate schemes for hyperbolic conservation laws. J. Sci. Comput. 71, 246–273 (2017) |
The Author(s)
/
| 〈 |
|
〉 |