Convergence Analysis of Non-conforming Finite Element Method for a Quasi-static Contact Problem

Kamana Porwal , Tanvi Wadhawan

Communications on Applied Mathematics and Computation ›› : 1 -27.

PDF
Communications on Applied Mathematics and Computation ›› :1 -27. DOI: 10.1007/s42967-024-00459-x
Original Paper

Convergence Analysis of Non-conforming Finite Element Method for a Quasi-static Contact Problem

Author information +
History +
PDF

Abstract

We analyze the numerical solution of a non-linear evolutionary variational inequality, which is encountered in the investigation of quasi-static contact problems. The study of this article encompasses both the semi-discrete and fully discrete schemes, where we employ the backward Euler method for time discretization and utilize the lowest order Crouzeix-Raviart non-conforming finite-element method for spatial discretization. By assuming appropriate regularity conditions on the solution, we establish a priori error analysis for these schemes, achieving the optimal convergence order for linear elements. To illustrate the numerical convergence rates, we provide numerical results on a two-dimensional test problem.

Cite this article

Download citation ▾
Kamana Porwal, Tanvi Wadhawan. Convergence Analysis of Non-conforming Finite Element Method for a Quasi-static Contact Problem. Communications on Applied Mathematics and Computation 1-27 DOI:10.1007/s42967-024-00459-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alart P, Curnier A. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng., 1991, 92(3): 353-375.

[2]

Andersson LE. A quasistatic frictional problem with normal compliance. Nonlinear Anal. Theo. Method. Appl., 1991, 16(4): 347-369.

[3]

Andersson LE. Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Opt., 2000, 42 169-202.

[4]

Andersson LE, Klarbring A. A review of the theory of static and quasi-static frictional contact problems in elasticity. Philos. Trans. R. Soc. London. Ser. A: Math. Phys. Eng. Sci., 2001, 359(1789): 2519-2539.

[5]

Barboteu M, Han W, Sofonea M. Numerical analysis of a bilateral frictional contact problem for linearly elastic materials. IMA J. Numer. Anal., 2002, 22(3): 407-436.

[6]

Capatina A. Existence and uniqueness results. Var. Inequal. Frict. Contact Probl., 2014, 3 31-82

[7]

Carstensen C, Köhler K. Nonconforming FEM for the obstacle problem. IMA J. Numer. Anal., 2017, 37(1): 64-93.

[8]

Ciarlet PG The Finite Element Method for Elliptic Problems, 2002 Philadelphia SIAM.

[9]

Cocou M. A variational inequality and applications to quasistatic problems with Coulomb friction. Appl. Anal., 2018, 97(8): 1357-1371.

[10]

Cocu M. Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci., 1984, 22(5): 567-575.

[11]

Cocu M, Pratt E, Raous M. Formulation and approximation of quasistatic frictional contact. Int. J. Eng. Sci., 1996, 34(7): 783-798.

[12]

Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.: A discontinuous Galerkin formulation for classical and gradient plasticity–Part 1: formulation and analysis. Comput. Methods Appl. Mech. Eng. 196(37/38/39/40), 3881–3897 (2007)

[13]

Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.: A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: algorithms and numerical analysis. Comput. Methods Appl. Mech. Eng. 197(1/2/3/4), 1–21 (2007)

[14]

Duvaut G, Lions JL Inequalities in Mechanics and Physics, 2008 Berlin Springer Science & Business Media

[15]

Fernández JR, Hild P. A priori and a posteriori error analyses in the study of viscoelastic problems. J. Comput. Appl. Math., 2009, 225(2): 569-580.

[16]

Glowinski R Lectures on Numerical Methods for Non-linear Variational Problems, 2008 Berlin Springer Science & Business Media

[17]

Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, Providence, R.I. (2002)

[18]

Hansbo P, Larson MG. Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM: Math. Modell. Numer. Anal., 2003, 37(1): 63-72.

[19]

Kesavan S. Topics in functional analysis and applications. Math. Comp. Sim., 1990, 32(4): 424.

[20]

Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

[21]

Klarbring A, Mikelić A, Shillor M. Frictional contact problems with normal compliance. Int. J. Eng. Sci., 1988, 26(8): 811-832.

[22]

Klarbring A, Mikelić A, Shillor M. On friction problems with normal compliance. Nonlinear Anal., 1989, 13(8): 935-955.

[23]

Rocca R. Existence of a solution for a quasistatic problem of unilateral contact with local friction. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 1999, 328(12): 1253-1258

[24]

Rocca R, Cocu M. Existence and approximation of a solution to quasistatic Signorini problem with local friction. Int. J. Eng. Sci., 2001, 39(11): 1233-1255.

[25]

Scott LR, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput., 1990, 54(190): 483-493.

[26]

Shillor M, Sofonea M, Telega JJ Models and Analysis of Quasistatic Contact: Variational Methods, 2004 Berlin Springer Science & Business Media 655

[27]

Sofonea, M., Matei, A.: Variational inequalities with applications: a study of antiplane frictional contact problems, In: Advances in Mechanics and Mathematics, vol. 18. Springer Science & Business Media, Berlin (2009)

[28]

Wang F, Han W, Cheng X. Discontinuous Galerkin methods for solving a quasistatic contact problem. Numer. Math., 2014, 126(4): 771-800.

RIGHTS & PERMISSIONS

Shanghai University

PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

/