An Upwind Weak Galerkin Scheme for Convection-Dominated Oseen Equations

Wenya Qi , Junping Wang

Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (3) : 1016 -1033.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (3) : 1016 -1033. DOI: 10.1007/s42967-024-00438-2
Original Paper

An Upwind Weak Galerkin Scheme for Convection-Dominated Oseen Equations

Author information +
History +
PDF

Abstract

An upwind weak Galerkin finite element scheme was devised and analyzed in this article for convection-dominated Oseen equations. The numerical algorithm was based on the weak Galerkin method enhanced by upwind stabilization. The resulting finite element scheme uses equal-order, say k, polynomial spaces on each element for the velocity and the pressure unknowns. With finite elements of order

k1
, the numerical solutions are proved to converge at the rate of
O(hk+12)
in an energy-like norm for convection-dominated Oseen equations. Numerical results are presented to demonstrate the accuracy and effectiveness of the upwind weak Galerkin scheme.

Keywords

Convection-dominated / Weak Galerkin / Oseen equations / Upwind schemes

Cite this article

Download citation ▾
Wenya Qi, Junping Wang. An Upwind Weak Galerkin Scheme for Convection-Dominated Oseen Equations. Communications on Applied Mathematics and Computation, 2024, 7(3): 1016-1033 DOI:10.1007/s42967-024-00438-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsRA, FournierJJFSobolev Spaces, 20032New YorkAcademic Press

[2]

AhmedN, BarrenecheaGR, BurmanE, GuzmanJ, LinkeA, MerdonC. A pressure-robust discretization of Oseen’s equation using stabilization in the vorticity equation. SIAM. J. Numer. Anal., 2021, 59: 2746-2774.

[3]

Beirão da VeigaL, DassiF, VaccaG. Vorticity-stabilized virtual elements for the Oseen equation. Math. Models Methods Appl. Sci., 2021, 31: 3009-3052.

[4]

BraackM, BurmanE. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal., 2006, 43: 2544-2566.

[5]

BraackM, BurmanE, JohnV, LubeG. Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng., 2007, 196: 853-866.

[6]

BrooksAN, HughesTJR. Streaming upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Math. Appl., 1982, 32: 199-259

[7]

BurmanE, FernándezMA, HansboP. Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal., 2006, 44: 1248-1274.

[8]

ChenG, FengM, XieX. Robust globally divergence-free weak Galerkin methods for Stokes equations. J. Comput. Math., 2016, 34: 549-572.

[9]

ChenX, LiY. Superconvergent pseudostress-velocity finite element methods for the Oseen equations. J. Sci. Comput., 2022, 92: 17.

[10]

ChristieI, GriffithsDF, MitchellAR, ZienkiewiczOC. Finite element methods for second order differential equations with significant first derivatives. Internat. J. Numer. Methods Eng., 1976, 10: 1389-1396.

[11]

DouglasJ, RussellTF. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 1982, 19: 871-885.

[12]

FrancaLP, JohnV, MatthiesG, TobiskaL. An inf-sup stable and residual-free bubble element for the Oseen equations. SIAM J. Numer. Anal., 2007, 45: 2392-2407.

[13]

GaoF, ZhangS, ZhuP. Modified weak Galerkin method with weakly imposed boundary condition for convection-dominated diffusion equations. Appl. Numer. Math., 2020, 157: 490-504.

[14]

GiraultV, RaviartPAFinite Element Approximation of the Navier-Stokes Equations: Theory and Algorithms, 1986BerlinSpringer Verlag.

[15]

LiY, FengM, LuoY. A new local projection stabilization virtual element method for the Oseen problem on polygonal meshes. Adv. Comput. Math., 2022, 48: 30.

[16]

LinR, YeX, ZhangS, ZhuP. A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems. SIAM J. Numer. Anal., 2018, 56: 1482-1497.

[17]

LiuX, LiJ, ChenZ. A weak Galerkin finite element method for the Oseen equations. Adv. Comput. Math., 2016, 42: 1473-1490.

[18]

MatthiesG, TobiskaL. Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal., 2015, 35: 239-269.

[19]

MuL, LiuX, ZhangS. A stabilizer-free, pressure-robust, and superconvergence weak Galerkin finite element method for the Stokes equations on polytopal mesh. SIAM J. Sci. Comput., 2021, 43: A2614-A2637.

[20]

ParkEJ, SeoB. An upstream pseudostress-velocity mixed formulation for the Oseen equations. Bull. Korean Math. Soc., 2014, 51: 267-285.

[21]

QiW, SeshaiyerP, WangJ. A generalized weak Galerkin method for Oseen equation. J. Comput. Appl. Math., 2023, 440. 115511

[22]

WangJ, YeX. A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput., 2014, 83: 2101-2126.

[23]

WangJ, YeX. A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math., 2016, 42: 155-174.

[24]

ZhangJ, ZhangK, LiJ, WangX. A weak Galerkin finite element method for the Navier-Stokes equations. Commun. Comput. Phys, 2018, 23: 706-746.

[25]

Zhao, W.: Higher order weak Galerkin methods for the Navier-Stokes equations with large Reynolds number. Numer. Methods Partial Differential Equations 38, 1967–1992 (2022)

RIGHTS & PERMISSIONS

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/