Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

J. Apraiz , A. Doubova , E. Fernández-Cara , M. Yamamoto

Communications on Applied Mathematics and Computation ›› : 1 -15.

PDF
Communications on Applied Mathematics and Computation ›› : 1 -15. DOI: 10.1007/s42967-024-00437-3
Original Paper

Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

Author information +
History +
PDF

Abstract

We consider a one-dimensional fluid-solid interaction model governed by the Burgers equation with a time varying interface. We discuss the inverse problem of determining the shape of the interface from Dirichlet and Neumann data at one endpoint of the spatial interval. In particular, we establish unique results and some conditional stability estimates. For the proofs, we use and adapt some lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities.

Cite this article

Download citation ▾
J. Apraiz, A. Doubova, E. Fernández-Cara, M. Yamamoto. Inverse Problems for One-Dimensional Fluid-Solid Interaction Models. Communications on Applied Mathematics and Computation 1-15 DOI:10.1007/s42967-024-00437-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Ministerio de Ciencia, Innovación y Universidades(PID2021-126813NB-I00)

Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza(IT1615-22)

Japan Society for the Promotion of Science((A) 20H00117)

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/