A Novel Greedy Block Gauss-Seidel Method for Solving Large Linear Least-Squares Problems
Chao Sun , Xiao-Xia Guo
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1959 -1976.
A Novel Greedy Block Gauss-Seidel Method for Solving Large Linear Least-Squares Problems
In this paper, we present a new convergence upper bound for the greedy Gauss-Seidel (GGS) method proposed by Zhang and Li [
Greedy strategy / Linear least-squares problem / Block Gauss-Seidel method / Convergence property / 15A24 / 15A06 / 65F10 / 65F45
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Bai, Z.-Z., Wu, W.-T.: Randomized Kaczmarz iteration methods: algorithmic extensions and convergence theory. Jpn. J. Indust. Appl. Math. 40(3), 1421–1443 (2023) |
| [9] |
|
| [10] |
|
| [11] |
Canutescu, A.A., Dunbrack, R.L.: Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5), 963–972 (2003) |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Demmel, J.W.: Applied Numerical Linear Algebra. Tsinghua University Press, Beijing (1997) |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Jin, L.-L., Li, H.-B.: Greedy double subspaces coordinate descent method via orthogonalization. arXiv:2203.02153v2 (2022) |
| [22] |
Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641–654 (2010) |
| [23] |
Li, H.-Y., Zhang, Y.-J.: Greedy block Gauss-Seidel methods for solving large least-squares problem. arXiv: 2004.02476v1 (2020) |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Nutini, J., Sepehry, B., Laradji, I., Virani, A., Schmidt, M., Koepke, H.: Convergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph. arXiv:1612.07838 (2016) |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Sorensen, D.C., Embree, M.: A DEIM induced CUR factorization. SIAM J. Sci. Comput. 38(3), A1454–A1482 (2016) |
| [33] |
Thoppe, G., Borkar, V.S., Garg, D.: Greedy block coordinate descent (GBCD) method for high dimensional quadratic programs. arXiv:1404.6635v3 (2014) |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
Zhang, Y.-J., Li, H.-Y.: A novel greedy Gauss-Seidel method for solving large linear least-squares problem. arXiv:2004.03692v1 (2020) |
Shanghai University
/
| 〈 |
|
〉 |