Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations

Yan-Xia Dai , Ren-Yi Yan , Ai-Li Yang

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1815 -1825.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1815 -1825. DOI: 10.1007/s42967-024-00403-z
Original Paper
research-article

Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations

Author information +
History +
PDF

Abstract

In this work, by applying the minimum residual technique to the block-diagonal and anti-block-diagonal splitting (BAS) iteration scheme, an iteration method named minimum residual BAS (MRBAS) is proposed to solve a two-by-two block system of nonlinear equations arising from the reformulation of the system of absolute value equations (AVEs). The theoretical analysis shows that the MRBAS iteration method is convergent under suitable conditions. Numerical results demonstrate the feasibility and the effectiveness of the MRBAS iteration method.

Keywords

Absolute value equations (AVEs) / Block-diagonal and anti-block-diagonal splitting (BAS) / Minimum residual / Minimum residual BAS (MRBAS) iteration / Convergence analysis / 65H10 / 65F10

Cite this article

Download citation ▾
Yan-Xia Dai, Ren-Yi Yan, Ai-Li Yang. Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations. Communications on Applied Mathematics and Computation, 2025, 7(5): 1815-1825 DOI:10.1007/s42967-024-00403-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaiZ-Z. Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations. Numer. Algorithms, 1997, 15(3/4): 347-372

[2]

BaiZ-Z. A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms, 1997, 14: 295-319

[3]

BaiZ-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2010, 17: 917-933

[4]

BaiZ-Z, BenziM, ChenF. Modified HSS iteration methods for a class of complex symmetric linear systems. Computing, 2010, 87: 93-111

[5]

BaiZ-Z, GolubGH, NgMK. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24: 603-626

[6]

BaiZ-Z, MigallónV, PenadésJ, SzyldDB. Block and asynchronous two-stage methods for mildly nonlinear systems. Numer. Math., 1999, 82: 1-20

[7]

BaiZ-Z, PanJ-YMatrix Analysis and Computations, 2021, Philadelphia. SIAM.

[8]

BaiZ-Z, YangX. On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math., 2009, 59: 2923-2936

[9]

BaiZ-Z, ZhangL-L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2013, 20: 425-439

[10]

CaccettaL, QuB, ZhouG-L. A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl., 2011, 48: 45-58

[11]

CaoY, ShiQ, ZhuS-L. A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Math., 2021, 6: 1258-1275

[12]

CottleRW, PangJ-S, StoneREThe Linear Complementarity Problem, 2009, Philadelphia. SIAM.

[13]

DehghanM, ShirilordA. Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. Appl. Numer. Math., 2020, 158: 425-438

[14]

GutknechtMH, RozložníkM. Residual smoothing techniques: do they improve the limiting accuracy of iterative solvers?. BIT Numer. Math., 2001, 41: 86-114

[15]

HaghaniFK. On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl., 2015, 166: 619-625

[16]

HornRA, JohnsonCRMatrix Analysis, 2012, Cambridge. Cambridge University Press.

[17]

KeY-F. The new iteration algorithm for absolute value equation. Appl. Math. Lett., 2020, 99105990

[18]

KeY-F, MaC-F. SOR-like iteration method for solving absolute value equations. Appl. Math. Comput., 2017, 311: 195-202

[19]

KetabchiS, MoosaeiH. An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl., 2012, 64: 1882-1885

[20]

LiC-X. A modified generalized Newton method for absolute value equations. J. Optim. Theory Appl., 2016, 170: 1055-1059

[21]

LiC-X, WuS-LSongH, JiangD. Block-diagonal and anti-block-diagonal splitting iteration method for absolute value equation. Simulation Tools and Techniques, 2021, Cham. Springer. 572581369

[22]

MangasarianOL. Absolute value programming. Comput. Optim. Appl., 2007, 36: 43-53

[23]

MangasarianOL. A generalized Newton method for absolute value equations. Optim. Lett., 2009, 3: 101-108

[24]

MangasarianOL. A hybrid algorithm for solving the absolute value equation. Optim. Lett., 2015, 9: 1469-1474

[25]

MangasarianOL, MeyerRR. Absolute value equations. Linear Algebra Appl., 2006, 419: 359-367

[26]

MiaoS-X, XiongX-T, WenJ. On Picard-SHSS iteration method for absolute value equation. AIMS Math., 2021, 6: 1743-1753

[27]

OrtegaJM, RheinboldtWCIterative Solution of Nonlinear Equations in Several Variables, 2000, Philadelphia. SIAM.

[28]

ProkopyevO. On equivalent reformulations for absolute value equations. Comput. Optim. Appl., 2009, 44: 363-372

[29]

RohnJ. A theorem of the alternatives for the equation $Ax+B|x|=b$. Linear Multilinear Algebra, 2004, 52: 421-426

[30]

RohnJ. An algorithm for solving the absolute value equations. Electron. J. Linear Algebra, 2009, 18: 589-599

[31]

RohnJ, HooshyarbakhshV, FarhadsefatR. An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett., 2014, 8: 35-44

[32]

SalkuyehDK. The Picard-HSS iteration method for absolute value equations. Optim. Lett., 2014, 8: 2191-2202

[33]

VargaRSMatrix Iterative Analysis, 2000, Berlin. Springer.

[34]

WalkerHF. Residual smoothing and peak/plateau behavior in Krylov subspace methods. Appl. Numer. Math., 1995, 19: 279-286

[35]

WuS-L, GuoP. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math., 2018, 132: 127-137

[36]

YangA-L, WuY-J, CaoY. Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems. BIT Numer. Math., 2019, 59: 299-319

[37]

YoungDMIterative Solution of Large Linear Systems, 1971, New York. Academic Press.

[38]

YuD-M, ChenC-R, HanD-R. A modified fixed point iteration method for solving the system of absolute value equations. Optimization, 2022, 71: 449-461

[39]

ZhangJ-L, ZhangG-F, LiangZ-Z. A modified generalized SOR-like method for solving an absolute value equation. Linear Multilinear Algebra, 2023, 71: 1578-1595

Funding

National Natural Science Foundation of China(12161030)

Natural Science Foundation of Hainan Province(523MS039)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/