H3N3 Approximate Formulae for Typical Fractional Derivatives

Enyu Fan , Yaxuan Li , Qianlan Zhao

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2485 -2501.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2485 -2501. DOI: 10.1007/s42967-024-00395-w
Original Paper
research-article

H3N3 Approximate Formulae for Typical Fractional Derivatives

Author information +
History +
PDF

Abstract

The existing numerical approximation formulae for two kinds of typical fractional derivatives—the exponential Caputo and Caputo-Hadamard derivatives both of order

α(1,2)
include L2,
L21
, H2N2, but their convergence orders are all less than 2. To obtain a higher accuracy convergence order, we construct H3N3 approximation formulae based on the H2N2 formulae of these two kinds of derivatives and the
H3N3-2σ
formula of the Caputo derivative, determine their truncation errors, and show the coefficients’ properties. Simultaneously, we display the numerical examples which support the theoretical analysis.

Keywords

Exponential Caputo derivative / Caputo-Hadamard derivative / H3N3 formula / Truncation error / 26A33

Cite this article

Download citation ▾
Enyu Fan, Yaxuan Li, Qianlan Zhao. H3N3 Approximate Formulae for Typical Fractional Derivatives. Communications on Applied Mathematics and Computation, 2025, 7(6): 2485-2501 DOI:10.1007/s42967-024-00395-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du RL, Li CP, Sun ZZ. H1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^1$$\end{document}-analysis of H3N3-2σ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\text{H3N3-2}_\sigma $$\end{document}-based difference method for fractional hyperbolic equations. Comput. Appl. Math., 2024, 43: 69

[2]

Fan, E.Y., Li, C.P., Li, Z.Q.: Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear. Sci. Numer. Simul. 106, 106096 (2022)

[3]

Fan EY, Li CP, Li ZQ. Numerical methods for the Caputo-type fractional derivative with an exponential kernel. J. Appl. Anal. Comput., 2023, 13(1): 376-423

[4]

Gohar M, Li CP, Li ZQ. Finite difference methods for Caputo-Hadamard fractional differential equations. Mediterr. J. Math., 2020, 17(6194

[5]

Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, 2006, Amsterdam, Elsevier

[6]

Li, C.P., Li, Z.Q.: Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 31(2), 31 (2021)

[7]

Li CP, Li ZQ. On blow-up for a time-space fractional partial differential equation with exponential kernel in temporal derivative. J. Math. Sci., 2022, 266(3381-394

[8]

Li CP, Li ZQ, Wang Z. Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput., 2020, 85(241

[9]

Li, C.P., Li, Z.Q., Yin, C.T.: Which kind of fractional partial differential equations has solution with exponential asymptotics? In: Dzielinski, A., Sierociuk, D., Ostalczyk, P. (eds.) Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA’21), pp. 112–117. Springer, Cham (2022)

RIGHTS & PERMISSIONS

Shanghai University

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/