Higher Order Computational Approach for Generalized Time-Fractional Diffusion Equation

Nikki Kedia , Anatoly A. Alikhanov , Vineet Kumar Singh

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2462 -2484.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2462 -2484. DOI: 10.1007/s42967-024-00393-y
Original Paper
research-article

Higher Order Computational Approach for Generalized Time-Fractional Diffusion Equation

Author information +
History +
PDF

Abstract

The present article is devoted to developing new finite difference schemes with a higher order of the convergence for the generalized time-fractional diffusion equations (GTFDEs) that are characterized by a weight function w(t). Three different discrete analogs with different orders of approximations are designed for the generalized Caputo derivative. The major contribution of this paper is the development of an L2 type difference scheme that results in the

(3-α)
order of convergence in time. The spatial direction is discretized using a second-order difference operator. Fundamental properties of the coefficients of the L2 difference operator are examined and proved theoretically. The stability and convergence analysis of the developed L2 scheme are established theoretically using the energy method. An efficient algorithm is developed and implemented on numerical test problems to prove the numerical accuracy of the scheme.

Keywords

Generalized L2 formula / Weight function / Generalized memory kernel / Finite difference / Caputo fractional derivative (FD) / 65M06 / 65M12 / 65M15 / 65D15

Cite this article

Download citation ▾
Nikki Kedia, Anatoly A. Alikhanov, Vineet Kumar Singh. Higher Order Computational Approach for Generalized Time-Fractional Diffusion Equation. Communications on Applied Mathematics and Computation, 2025, 7(6): 2462-2484 DOI:10.1007/s42967-024-00393-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alber HD. Materials with Memory: Initial-Boundary Value Problems for Constitutive Equations with Internal Variables, 2006, Berlin, Springer

[2]

Alikhanov, A., Apekov, A., Huang, C.: A high-order difference scheme for the diffusion equation of multi-term and distributed orders. In: Mathematics and Its Applications in New Computer Systems: MANCS-2021, pp. 515–523. Springer (2022)

[3]

Alikhanov AA. Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput., 2012, 219(8): 3938-3946

[4]

Alikhanov AA. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys., 2015, 280: 424-438

[5]

Alikhanov AA. Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput., 2015, 268: 12-22

[6]

Alikhanov AA. A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions. Comput. Methods Appl. Math., 2017, 17(4): 647-660

[7]

Alikhanov AA, Asl MS, Huang C, Khibiev A. A second-order difference scheme for the nonlinear time-fractional diffusion-wave equation with generalized memory kernel in the presence of time delay. J. Comput. Appl. Math., 2024, 438 115515

[8]

Alikhanov AA, Huang C. A high-order L2 type difference scheme for the time-fractional diffusion equation. Appl. Math. Comput., 2021, 411126545

[9]

Amendola G, Fabrizio M, Golden JM, Amendola G, Fabrizio M, Golden J. Thermodynamics of Materials with Memory, 2021, Berlin, Springer

[10]

Baleanu D, Agrawal OP. Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys., 2006, 56(10/11): 1087-1092

[11]

Boltzmann L. Theory of elastic aftereffect [zur theorie der elastischen nachwirkung]. Ann. Der Phys. Und Chem. Erganz, 1876, 7: 7

[12]

Boltzmann L. Zur theorie der elastischen nachwirkung. Annalen der Physik, 1878, 241(11): 430-432

[13]

Caputo, M.: Elasticita e dissipazione. Zanichelli, Bologna (1969)

[14]

Carr P, Geman H, Madan DB, Yor M. Stochastic volatility for Lévy processes. Math. Finance, 2003, 13(3345-382

[15]

Day WA. The Thermodynamics of Simple Materials with Fading Memory, 2013, New York, Springer22

[16]

Ford NJ, Yan Y. An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calculus Appl. Anal., 2017, 20(5): 1076-1105

[17]

Gao GH, Alikhanov AA, Sun ZZ. The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput., 2017, 73: 93-121

[18]

Gu XM, Huang TZ, Zhao YL, Lyu P, Carpentieri B. A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients. Numer. Methods Partial Differential Equations, 2021, 37(2): 1136-1162

[19]

Gu XM, Wu SL. A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. J. Comput. Phys., 2020, 417 109576

[20]

Jiang S, Zhang J, Zhang Q, Zhang Z. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys., 2017, 21(3): 650-678

[21]

Kedia, N., Alikhanov, A.A., Singh, V.K.: Numerical methods for solving the robin boundary value problem for a generalized diffusion equation with a non-smooth solution. In: Mathematics and Its Applications in New Computer Systems: MANCS-2021, pp. 219–228. Springer (2022)

[22]

Kedia N, Alikhanov AA, Singh VK. Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel. Appl. Numer. Math., 2022, 172: 546-565

[23]

Kedia, N., Alikhanov, A.A., Singh, V.K.: Robust finite difference scheme for the non-linear generalized time-fractional diffusion equation with non-smooth solution. Math. Comput. Simul. 219(C), 337–354 (2024)

[24]

Khibiev A, Alikhanov A, Huang C. A second-order difference scheme for generalized time-fractional diffusion equation with smooth solutions. Comput. Methods Appl. Math., 2024, 24(1): 101-117

[25]

Meerschaert MM, Sabzikar F. Tempered fractional Brownian motion. Stat. Probab. Lett., 2013, 83(10): 2269-2275

[26]

Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35(17), L17403-1–L17403-5 (2008)

[27]

Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1993, New York, Wiley

[28]

Ortigueira MD, Machado JT. What is a fractional derivative?. J. Comput. Phys., 2015, 293: 4-13

[29]

Podlubny I. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng., 1999, 198: 340

[30]

Rabotnov Yu, N.: Elements of Hereditary Solids Mechanics: Translated from the Russian by M. Konyaeva. Mir Publishers, Moscow (1980)

[31]

Sabzikar F, Meerschaert MM, Chen J. Tempered fractional calculus. J. Comput. Phys., 2015, 293: 14-28

[32]

Sandev T, Chechkin A, Kantz H, Metzler R. Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel. Fract. Calculus Appl. Anal., 2015, 18(4): 1006-1038

[33]

Sun ZZ, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math., 2006, 56(2): 193-209

[34]

Tarasov VE. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul., 2013, 18(11): 2945-2948

[35]

Tarasov VE. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul., 2016, 30(1/2/3): 1-4

[36]

Taukenova F, Shkhanukov-Lafishev MK. Difference methods for solving boundary value problems for fractional differential equations. Comput. Math. Math. Phys., 2006, 46: 1785-1795

[37]

Ullah I, Ahmad S, Ur Rahman M, Arfan M. Investigation of fractional order tuberculosis (TB) model via Caputo derivative. Chaos Solitons Fractals, 2021, 142 110479

[38]

Wang YM, Ren L. A high-order L\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L$$\end{document}2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput., 2019, 342: 71-93

Funding

Russian Science Foundation(22-21-00363)

SCIENCE AND ENGINEERING RESEARCH BOARD, INDIA(CRG/2022/000813)

RIGHTS & PERMISSIONS

Shanghai University

PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

/