Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement
Ciro D’Apice , Peter I. Kogut , Rosanna Manzo , Antonino Parisi
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2385 -2419.
Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement
We propose a new variational model in Sobolev-Orlicz spaces with non-standard growth conditions of the objective functional and discuss its applications to the simultaneous contrast enhancement and denoising of color images. The characteristic feature of the proposed model is that we deal with a constrained non-convex minimization problem that lives in variable Sobolev-Orlicz spaces where the variable exponent is unknown a priori and it depends on a particular function that belongs to the domain of the objective functional. In contrast to the standard approach, we do not apply any spatial regularization to the image gradient. We discuss the consistency of the variational model, give the scheme for its regularization, derive the corresponding optimality system, and propose an iterative algorithm for practical implementations.
Inverse problem / Image contrast enhancement / Denoising / Constrained minimization problem / Approximation methods / Sobolev-Orlicz space / Optimality system / 90C90 / 94A08
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006) |
| [5] |
|
| [6] |
|
| [7] |
Blomgren, P., Chan, T.F., Mulet, P., Wong, C.: Total variation image restoration: numerical methods and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing, Santa Barbara, CA, USA, 1997, vol. 42, pp. 384–387 (1997) |
| [8] |
Bungert, L., Coomes, D.A., Ehrhardt, M.J., Rasch, J., Reisenhofer, R., Schönlieb, C.B.: Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Probl. 34(4), 044003 (2018) |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Chen, Y., Levine, S., Stanich, J.: Image restoration via nonstandard diffusion. Figshare (2014). https://www.mathcs.duq.edu/tech-reports/tr04-01.pdf |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
D’Apice, C., De Maio, U., Kogut, P.I.: An indirect approach to the existence of quasi-optimal controls in coefficients for multi-dimensional thermistor problem. In: Sadovnichiy, V.A., Zgurovsky, M. (eds.) Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, pp. 489–522. Springer, New York (2020) |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Dautray, R., Lion, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1985) |
| [22] |
Diening, L., Harjulehto, P., Hästö, P., Ru̇ẑiĉka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York (2011) |
| [23] |
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) |
| [24] |
|
| [25] |
|
| [26] |
Kogut, P.I.: Variational S-convergence of minimization problems. Part I. Definitions and basic properties. Problemy Upravleniya i Informatiki (Avtomatika) 5, 29–42 (1996) |
| [27] |
|
| [28] |
|
| [29] |
Kogut, P.I.: On optimal and quasi-optimal controls in coefficients for multi-dimensional thermistor problem with mixed Dirichlet-Neumann boundary conditions. Control Cybern. 48(1), 31–68 (2019) |
| [30] |
Kogut, P.I., Kohut, Y., Manzo, R.: Existence result and approximation of an optimal control problem for the Perona-Malik equation. Ric. Mat. (2022). https://doi.org/10.1007/11587-022-00730-4 |
| [31] |
Kogut, P.I., Kupenko, O.P.: Approximation Methods in Optimization of Nonlinear Systems. De Gruyter Series in Nonlinear Analysis and Applications, vol. 32. Walter de Gruyter GmbH, Berlin (2019) |
| [32] |
Kogut, P.I., Leugering, L.: On S-homogenization of an optimal control problem with control and state constraint. Z. fur Anal. ihre Anwend. 20(2), 395–429 (2001) |
| [33] |
Kohr, H.: Total variation regularization with variable Lebesgue priors. arXiv:1702.08807 (2017) |
| [34] |
Lieu, L.H., Vese, L.A.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58, 167–193 (2008) |
| [35] |
|
| [36] |
|
| [37] |
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 2. AMS, Providence (2002) |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Schönlieb, C.B.: Total Variation Minimization with an H-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^{-1}$$\end{document} Constraint. Research Gate Publication (2009) |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
The Author(s)
/
| 〈 |
|
〉 |