Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement

Ciro D’Apice , Peter I. Kogut , Rosanna Manzo , Antonino Parisi

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2385 -2419.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2385 -2419. DOI: 10.1007/s42967-024-00382-1
Original Paper
research-article

Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement

Author information +
History +
PDF

Abstract

We propose a new variational model in Sobolev-Orlicz spaces with non-standard growth conditions of the objective functional and discuss its applications to the simultaneous contrast enhancement and denoising of color images. The characteristic feature of the proposed model is that we deal with a constrained non-convex minimization problem that lives in variable Sobolev-Orlicz spaces where the variable exponent is unknown a priori and it depends on a particular function that belongs to the domain of the objective functional. In contrast to the standard approach, we do not apply any spatial regularization to the image gradient. We discuss the consistency of the variational model, give the scheme for its regularization, derive the corresponding optimality system, and propose an iterative algorithm for practical implementations.

Keywords

Inverse problem / Image contrast enhancement / Denoising / Constrained minimization problem / Approximation methods / Sobolev-Orlicz space / Optimality system / 90C90 / 94A08

Cite this article

Download citation ▾
Ciro D’Apice, Peter I. Kogut, Rosanna Manzo, Antonino Parisi. Variational Model with Nonstandard Growth Condition in Image Restoration and Contrast Enhancement. Communications on Applied Mathematics and Computation, 2025, 7(6): 2385-2419 DOI:10.1007/s42967-024-00382-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alaa H, Alaa NE, Bouchriti A, Charkaou A. An improved nonlinear anisotropic PDE with p(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p(x)$$\end{document}-growth conditions applied to image restoration and enhancement. Authorea, 2022

[2]

Alvarez L, Lions P-L, Morel J-M. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 1992, 29: 845-866

[3]

Ambrosio L, Caselles V, Masnou S, Morel JM. The connected components of sets of finite perimeter. Eur. J. Math., 2001, 3: 39-92

[4]

Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006)

[5]

Bertalmío M, Caselles V, Provenzi E, Rizzi A. Perceptual color correction through variational techniques. IEEE Trans. Image Process., 2007, 16(4): 1058-1072

[6]

Black MJ, Sapiro G, Marimont DH, Heger D. Robust anisotropic diffusion. IEEE Trans. Image Process., 1998, 7(3): 421-432

[7]

Blomgren, P., Chan, T.F., Mulet, P., Wong, C.: Total variation image restoration: numerical methods and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing, Santa Barbara, CA, USA, 1997, vol. 42, pp. 384–387 (1997)

[8]

Bungert, L., Coomes, D.A., Ehrhardt, M.J., Rasch, J., Reisenhofer, R., Schönlieb, C.B.: Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Probl. 34(4), 044003 (2018)

[9]

Bungert L, Ehrhardt MJ. Robust image reconstruction with misaligned structural information. IEEE Access, 2020, 8: 222944-222955

[10]

Catté F, Lions PL, Morel J-M, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 1992, 29(1): 182-193

[11]

Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 2006, 66(4): 1383-1406

[12]

Chen, Y., Levine, S., Stanich, J.: Image restoration via nonstandard diffusion. Figshare (2014). https://www.mathcs.duq.edu/tech-reports/tr04-01.pdf

[13]

Chipot M, de Oliveira HB. Some results on the p(u)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p(u)$$\end{document}-Laplacian problem. Math. Annal., 2019, 375: 283-306

[14]

D’Apice C, De Maio U, Kogut PI. Gap phenomenon in homogenization of parabolic optimal control problem. IMA J. Math. Control Inf., 2008, 25: 461-480

[15]

D’Apice C, De Maio U, Kogut PI. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete Contin. Dyn. Syst. B, 2009, 11(2): 283-314

[16]

D’Apice, C., De Maio, U., Kogut, P.I.: An indirect approach to the existence of quasi-optimal controls in coefficients for multi-dimensional thermistor problem. In: Sadovnichiy, V.A., Zgurovsky, M. (eds.) Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, pp. 489–522. Springer, New York (2020)

[17]

D’Apice C, Kogut PI, Kupenko O, Manzo R. On variational problem with nonstandard growth functional and its applications to image processing. J. Math. Imaging Vis., 2023, 65(3): 472-491

[18]

D’Apice C, Kogut PI, Manzo R, Uvarov M. Variational model with nonstandard growth conditions for restoration of satellite optical images using synthetic aperture radar. Eur. J. Appl. Math., 2023, 34(1): 77-105

[19]

D’Apice C, Kogut PI, Manzo R. On coupled two-level variational problem in Sobolev-Orlicz space. Differ. Integral Equ., 2023, 36(7/8): 621-660

[20]

D’Apice C, Kogut PI, Manzo R. A two-level variational algorithm in the Sobolev-Orlicz space to predict daily surface reflectance at LANDSAT high spatial resolution and MODIS temporal frequency. J. Comput. Appl. Math., 2023, 434: 1-23

[21]

Dautray, R., Lion, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1985)

[22]

Diening, L., Harjulehto, P., Hästö, P., Ru̇ẑiĉka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York (2011)

[23]

Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

[24]

Jia Z, Ng MK, Wang W. Color image restoration by saturation-value total variation. SIAM J. Imaging Sci., 2019, 12(2): 972-1000

[25]

Karami F, Meskine D, Sadik K. A new nonlocal model for the restoration of textured images. J. Appl. Anal. Comput., 2019, 9(6): 2070-2095

[26]

Kogut, P.I.: Variational S-convergence of minimization problems. Part I. Definitions and basic properties. Problemy Upravleniya i Informatiki (Avtomatika) 5, 29–42 (1996)

[27]

Kogut PI. S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S$$\end{document}-convergence of the conditional optimization problems and its variational properties. Problemy Upravleniya i Informatiki (Avtomatika), 1997, 4: 64-79

[28]

Kogut PI. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discret. Contin. Dyn. Syst. A, 2014, 34(5): 2105-2133

[29]

Kogut, P.I.: On optimal and quasi-optimal controls in coefficients for multi-dimensional thermistor problem with mixed Dirichlet-Neumann boundary conditions. Control Cybern. 48(1), 31–68 (2019)

[30]

Kogut, P.I., Kohut, Y., Manzo, R.: Existence result and approximation of an optimal control problem for the Perona-Malik equation. Ric. Mat. (2022). https://doi.org/10.1007/11587-022-00730-4

[31]

Kogut, P.I., Kupenko, O.P.: Approximation Methods in Optimization of Nonlinear Systems. De Gruyter Series in Nonlinear Analysis and Applications, vol. 32. Walter de Gruyter GmbH, Berlin (2019)

[32]

Kogut, P.I., Leugering, L.: On S-homogenization of an optimal control problem with control and state constraint. Z. fur Anal. ihre Anwend. 20(2), 395–429 (2001)

[33]

Kohr, H.: Total variation regularization with variable Lebesgue priors. arXiv:1702.08807 (2017)

[34]

Lieu, L.H., Vese, L.A.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58, 167–193 (2008)

[35]

Manzo R. On Neumann boundary control problem for ill-posed strongly nonlinear elliptic equation with p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-Laplace operator and L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${L}^1$$\end{document}-type of nonlinearity. Ric. Mat., 2019, 68(2): 769-802

[36]

Manzo R. On Tikhonov regularization of optimal Neumann boundary control problem for an ill-posed strongly nonlinear elliptic equation with an exponential type of non-linearity. Differ. Integral Equ., 2020, 33(3/4): 139-162

[37]

Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 2. AMS, Providence (2002)

[38]

Osher S, Rudin LI. Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal., 1990, 27(4): 458-474

[39]

Piella G. Image fusion for enhanced visualization: a variational approach. Int. J. Comput. Vis., 2009, 83(1): 1-11

[40]

Pierre F, Aujol J-F, Bugeau A, Steidl G, Ta V-T. Variational contrast enhancement of gray-scale and RGB images. J. Math. Imaging Vis., 2017, 57: 99-116

[41]

Prasath VBS, Urbano JM, Vorotnikov D. Analysis of adaptive forward-backward diffusion flows with applications in image processing. Inverse Probl., 2015, 31: 1-30

[42]

Ring W . Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Numer. Anal., 2000, 34(4): 799-810

[43]

Schönlieb, C.B.: Total Variation Minimization with an H-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^{-1}$$\end{document} Constraint. Research Gate Publication (2009)

[44]

Sugimura D, Mikami T, Yamashita H, Hamamoto T. Enhancing color images of extremely low light scenes based on RGB/NIR images acquisition with different exposure times. IEEE Trans. Image Process., 2015, 24(11): 3586-3597

[45]

Wunderli T. On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl., 2010, 364(2): 591-598

[46]

Zhikov VV. Solvability of the three-dimensional thermistor problem. Proc. Steklov Inst. Math., 2008, 281: 98-111

[47]

Zhikov VV. On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci., 2011, 175(5): 463-570

Funding

Visiting Professors Program - UNISA Call 2022

RIGHTS & PERMISSIONS

The Author(s)

PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

/