Numerical Algorithms for Ultra-slow Diffusion Equations

Min Cai , Changpin Li , Yu Wang

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2339 -2384.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2339 -2384. DOI: 10.1007/s42967-024-00380-3
Original Paper
research-article

Numerical Algorithms for Ultra-slow Diffusion Equations

Author information +
History +
PDF

Abstract

In this article, numerical algorithms are derived for ultra-slow (or superslow) diffusion equations in one and two space dimensions, where the ultra-slow diffusion is characterized by the Caputo-Hadamard fractional derivative of order

α(0,1)
. To describe the non-locality in spatial interaction, the Riesz fractional derivative and the fractional Laplacian are used in one and two space dimensions, respectively. The Caputo-Hadamard derivative is discretized by two typical approximate formulae, i.e.,
L2-1σ
and L1-2 ones. The spatial fractional derivatives are discretized by the second order finite difference methods. When the
L2-1σ
discretization is used, the derived numerical schemes are unconditionally stable, with both theoretical and numerical convergence order
O(τ2+h2)
for all
α(0,1)
, in which
τ
and h are temporal and spatial stepsizes, respectively. When the L1-2 discretization is used, the derived numerical schemes are proved to be stable with the error estimate
O(τ2+h2)
for
α(0,0.3738)
, and numerically exhibit the stability for all
α(0,1)
with the numerical error being
O(τ3-α+h2)
. The illustrative examples displayed are in line with the theoretical analysis.

Keywords

Ultra-slow diffusion equation / Caputo-Hadamard derivative / Riesz derivative / Fractional Laplacian /

formula')">
L2-1σ
formula
/ L1-2 formula / 35R11 / 65M06

Cite this article

Download citation ▾
Min Cai, Changpin Li, Yu Wang. Numerical Algorithms for Ultra-slow Diffusion Equations. Communications on Applied Mathematics and Computation, 2025, 7(6): 2339-2384 DOI:10.1007/s42967-024-00380-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alikhanov AA, Huang CM. A class of time-fractional diffusion equations with generalized fractional derivatives. J. Comput. Appl. Math., 2022, 414 114424

[2]

Bai ZZ, Lu KY. Optimal rotated block-diagonal preconditioning for discretized optimal control problems constrained with fractional time-dependent diffusive equations. Appl. Numer. Math., 2021, 163: 126-146

[3]

da Silva FL. EEG and MEG: relevance to neuroscience. Neuron, 2013, 80: 1112-1128

[4]

Denisov SI, Kantz H. Continuous-time random walk theory of superslow diffusion. Europhys. Lett., 2010, 92: 30001

[5]

Diethelm K. The Analysis of Fractional Differential Equations, 2010, Berlin, Springer

[6]

Ding HF, Li CP. High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput., 2017, 71: 759-784

[7]

Fan EY, Li CP, Li ZQ. Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear Sci. Numer. Simul., 2022, 106 106096

[8]

Hao ZP, Cao WR, Li SY. Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity. Numer. Algorithms, 2021, 86: 1071-1087

[9]

Hao ZP, Zhang ZQ, Du R. Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys., 2021, 424 109851

[10]

Jiao CY, Khaliq A, Li CP, Wang HX. Difference between Riesz derivative and fractional Laplacian on the proper subset ofR\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{R}$$\end{document}. Fract. Calc. Appl. Anal., 2021, 24: 1716-1734

[11]

Le Breton E, Brune S, Ustaszewski K, Zahirovic S, Seton M, Muller RD. Kinematics and extent of the Piemont-Liguria Basin-implications for subduction processes in the Alps. Solid Earth, 2021, 12: 885-913

[12]

Li CP, Cai M. Theory and Numerical Approximations of Fractional Integrals and Derivatives, 2019, Philadelphia, SIAM

[13]

Li CP, Li ZQ. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci., 2021, 31: 1-60

[14]

Li CP, Li ZQ, Wang Z. Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput., 2020, 85: 41

[15]

Li CP, Zeng FH. Numerical Methods for Fractional Calculus, 2015, Boca Raton, Chapman and Hall/CRC

[16]

Lin XL, Ng MK, Sun HW. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl., 2017, 38: 1580-1614

[17]

Lomin A, Méndez V. Does ultra-slow diffusion survive in a three dimensional cylindrical comb?. Chaos Solitons Fractals, 2016, 82: 142-147

[18]

Lomnitz C. Creep measurements in igneous rocks. J. Geol., 1956, 64: 473-479

[19]

Lomnitz C. Linear dissipation in solids. J. Appl. Phys., 1957, 28: 201-205

[20]

Lomnitz C. Application of the logarithmic creep law to stress wave attenuation in the solid earth. J. Geophys. Res., 1962, 67: 365-368

[21]

Lyu CW, Xu CJ. Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput., 2016, 38: A2699-A2724

[22]

Meerschaert MM, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math., 2006, 56: 80-90

[23]

Ou CX, Cen DK, Vong S, Wang ZB. Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Appl. Numer. Math., 2022, 177: 34-57

[24]

Podlubny I. Fractional Differential Equations, 1999, San Diego, Academic Press

[25]

Tao CH, Seyfried WE, Lowell RP. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun., 2020, 11: 1300

[26]

Tian WY, Zhou H, Deng WH. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput., 2015, 84: 1703-1727

[27]

Wang Y, Cai M. Finite difference schemes for time-space fractional diffusion equations in one- and two-dimensions. Commun. Appl. Math. Comput., 2023, 5: 1674-1696

[28]

Wang YY, Hao ZP, Du R. A linear finite difference scheme for the two-dimensional nonlinear Schrödinger equation with fractional Laplacian. J. Sci. Comput., 2022, 90: 24

[29]

Warren JM. Global variations in abyssal peridotite compositions. Lithos, 2016, 248: 193-219

[30]

Yang ZW. Numerical approximation and error analysis for Caputo-Hadamard fractional stochastic differential equations. Z. Angew. Math. Phys., 2022, 73: 253

[31]

Zaky MA, Hendy AS, Suragan D. Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations. Appl. Numer. Math., 2022, 181: 326-346

[32]

Zheng XC. Logarithmic transformation between (variable-order) Caputo and Caputo-Hadamard fractional problems and applications. Appl. Math. Lett., 2021, 121 107366

Funding

National Natural Science Foundation of China(12271339)

RIGHTS & PERMISSIONS

Shanghai University

PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

/