Computing Tensor Generalized Bilateral Inverses

Ratikanta Behera , Jajati Keshari Sahoo , Predrag S. Stanimirović , Alena Stupina , Artem Stupin

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) : 2269 -2288.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6) :2269 -2288. DOI: 10.1007/s42967-024-00373-2
Original Paper
research-article

Computing Tensor Generalized Bilateral Inverses

Author information +
History +
PDF

Abstract

We introduce tensor generalized bilateral inverses (TGBIs) under the Einstein tensor product as an extension of generalized bilateral inverses (GBIs) in the matrix environment. Moreover, the TBGI class includes so far considered composite generalized inverses (CGIs) for matrices and tensors. Applications of TBGIs for solving multilinear systems are presented. The characterizations and representations of the TGBI were studied and verified using a specific algebraic approach. Further, a few characterizations of known CGIs (such as the CMP, DMP, MPD, MPCEP, and CEPMP) are derived. The main properties of the TGBIs were exploited and verified through numerical examples.

Keywords

Generalized bilateral inverses (GBIs) / Einstein product / Outer inverse / Poisson equations / 15A09 / 15A10 / 15A69

Cite this article

Download citation ▾
Ratikanta Behera, Jajati Keshari Sahoo, Predrag S. Stanimirović, Alena Stupina, Artem Stupin. Computing Tensor Generalized Bilateral Inverses. Communications on Applied Mathematics and Computation, 2025, 7(6): 2269-2288 DOI:10.1007/s42967-024-00373-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behera R, Mishra D. Further results on generalized inverses of tensors via the Einstein product. Linear Multilinear Algebra, 2017, 65(8): 1662-1682

[2]

Behera, R., Nandi, A.K., Sahoo, J.K.: Further results on the Drazin inverse of even-order tensors. Numer. Linear Algebra Appl. 27(5), e2317, 25 (2020)

[3]

Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl., 2013, 34(2): 542-570

[4]

Chen J, Mosić D, Xu S. On a new generalized inverse for Hilbert space operators. Quaest. Math., 2020, 43(9): 1331-1348

[5]

Du H-M, Wang B-X, Ma H-F. Perturbation theory for core and core-EP inverses of tensor via Einstein product. Filomat, 2019, 33(16): 5207-5217

[6]

Einstein A, et al.. The foundation of the general theory of relativity. Ann. Phys., 1916, 49(7): 769-822

[7]

Ji J, Wei Y. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl., 2018, 75(9): 3402-3413

[8]

Ji J, Wei Y. The outer generalized inverse of an even-order tensor with the Einstein product through the matrix unfolding and tensor folding. Electron. J. Linear Algebra, 2020, 36: 599-615

[9]

Kheirandish, E., Salemi, A.: Generalized bilateral inverses. J. Comput. Appl. Math. 428, 115137 (2023)

[10]

Kheirandish, E., Salemi, A.: Generalized bilateral inverses of tensors via Einstein product with applications to singular tensor equations. Comput. Appl. Math. 42(8), 343 (2023)

[11]

Lai, W.M., Rubin, D.H., Krempl, E., Rubin, D.: Introduction to Continuum Mechanics. Butterworth-Heinemann (2009)

[12]

Ma, H., Li, N., Stanimirović, P.S., Katsikis, V.N.: Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Comput. Appl. Math. 38(3), 111, 24 (2019)

[13]

Sahoo, J.K., Behera, R., Stanimirović, P.S., Katsikis, V.N., Ma, H.: Core and core-EP inverses of tensors. Comput. Appl. Math. 39(1), 9, 28 (2020)

[14]

Stanimirović, P.S., Ćirić, M., Katsikis, V.N., Li, C., Ma, H.: Outer and (b, c) inverses of tensors. Linear Multilinear Algebra 68, 940–971 (2018)

[15]

Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686-698

[16]

Sun L, Zheng B, Wei Y, Bu C. Generalized inverses of tensors via a general product of tensors. Front. Math. Chin., 2018, 13(4): 893-911

[17]

Wang, B., Du, H., Ma, H.: Perturbation bounds for DMP and CMP inverses of tensors via Einstein product. Comput. Appl. Math. 39(1), 28, 17 (2020)

[18]

Wang, Y., Wei, Y.: Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems. Comput. Appl. Math. 41(8), 419, 30 (2022)

RIGHTS & PERMISSIONS

Shanghai University

PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

/