A New Block Preconditioner for Double Saddle Point Systems Arising from Liquid Crystal Directors Modeling

Jian-Jun Zhang , Jia-Qi Liu

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1652 -1664.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1652 -1664. DOI: 10.1007/s42967-023-00361-y
Original Paper
research-article

A New Block Preconditioner for Double Saddle Point Systems Arising from Liquid Crystal Directors Modeling

Author information +
History +
PDF

Abstract

We develop and investigate a new block preconditioner for a class of double saddle point (DSP) problems arising from liquid crystal directors modeling using a finite element scheme. We analyze the spectral properties of the preconditioned matrix. Numerical results are provided to evaluate the behavior of preconditioned iterative methods using the new preconditioner.

Keywords

Iterative methods / Krylov methods / Preconditioning / Liquid crystals (LCs) / Saddle point problems / 65F08 / 65F10 / 65F50

Cite this article

Download citation ▾
Jian-Jun Zhang, Jia-Qi Liu. A New Block Preconditioner for Double Saddle Point Systems Arising from Liquid Crystal Directors Modeling. Communications on Applied Mathematics and Computation, 2025, 7(5): 1652-1664 DOI:10.1007/s42967-023-00361-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaiZJ, BaiZZ. On nonsingularity of block two-by-two matrices. Linear Algebra Appl., 2013, 439(8): 2388-2404

[2]

BaiZZ. Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput., 2006, 75(254): 791-815

[3]

BaiZZ. Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl., 2009, 16(6): 447-479

[4]

BaiZZ. Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J. Comput. Appl. Math., 2013, 237(1): 295-306

[5]

BaiZZ. On preconditioned iteration methods for complex linear systems. J. Eng. Math., 2015, 93: 41-60

[6]

BaiZZ. On spectral clustering of HSS preconditioner for generalized saddle-point matrices. Linear Algebra Appl., 2018, 555: 285-300

[7]

BaiZZ. Regularized HSS iteration methods for stabilized saddle-point problems. IMA J. Numer. Anal., 2019, 39(4): 1888-1923

[8]

BaiZZ, BenziM. Regularized HSS iteration methods for saddle-point linear systems. BIT Numer. Math., 2017, 57(2): 287-311

[9]

BaiZZ, GolubGH. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal., 2007, 27(1): 1-23

[10]

BaiZZ, GolubGH, PanJY. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math., 2004, 98(1): 1-32

[11]

BaiZZ, NgMK. On inexact preconditioners for nonsymmetric matrices. SIAM J. Sci. Comput., 2005, 26(5): 1710-1724

[12]

BaiZZ, NgMK, WangZQ. Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl., 2009, 31(2): 410-433

[13]

BaiZZ, PanJYMatrix Analysis and Computations, 2021, Philadelphia. SIAM.

[14]

BaiZZ, ParlettBN, WangZQ. On generalized successive overrelaxation methods for augmented linear systems. Numer. Math., 2005, 102(1): 1-38

[15]

BaiZZ, WangZQ. On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl., 2008, 428(11/12): 2900-2932

[16]

BeikFPA, BenziM. Iterative methods for double saddle point systems. SIAM J. Matrix Anal. Appl., 2018, 39(2): 902-921

[17]

BeikFPA, BenziM. Block preconditioners for saddle point systems arising from liquid crystal directors modeling. Calcolo, 2018, 55329

[18]

BenziM, DeparisS, GrandperrinG, QuarteroniA. Parameter estimates for the relaxed dimensional factorization preconditioner and application to hemodynamics. Comput. Methods Appl. Mech. Eng., 2016, 300: 129-145

[19]

BenziM, GolubGH. A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl., 2005, 26(1): 20-41

[20]

CaoY, LiS. Block triangular preconditioners based on symmetric-triangular decomposition for generalized saddle point problems. Appl. Math. Comput., 2019, 358: 262-277

[21]

ChenF, RenBC. On preconditioning of double saddle point linear systems arising from liquid crystal director modeling. Appl. Math. Lett., 2023, 136108445

[22]

DollarHS. Constraint-style preconditioners for regularized saddle-point problems. SIAM J. Matrix Anal. Appl., 2007, 29(2): 672-684

[23]

De GennesPG, ProstJThe Physics of Liquid Crystals, 19932Oxford. Clarendon Press.

[24]

HornRA, JohnsonCRMatrix Analysis, 1985, Cambridge. Cambridge University Press.

[25]

IpsenICF. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput., 2001, 23(3): 1050-1051

[26]

JiangMQ, CaoY. On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems. J. Comput. Appl. Math., 2009, 231(2): 973-982

[27]

LiangZZ, ZhangGF. Alternating positive semidefinite splitting preconditioners for double saddle point problems. Calcolo, 2019, 56326

[28]

MurphyMF, GolubGH, WathenAJ. A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput., 2000, 21(6): 1969-1972

[29]

PestanaJ. On the eigenvalues and eigenvectors of block triangular preconditioned block matrices. SIAM J. Matrix Anal. Appl., 2014, 35(2): 517-525

[30]

RamageA, GartlandJREC. A preconditioned nullspace method for liquid crystal director modeling. SIAM J. Sci. Comput., 2013, 35(1): B226-B247

[31]

RenBC, ChenF, WangXL. Improved splitting preconditioner for double saddle point problems arising from liquid crystal director modeling. Numer. Algorithms, 2022, 91(3): 1363-1379

[32]

SaadYIterative Methods for Sparse Linear Systems, 20032Philadelphia. SIAM.

[33]

ShenQQ, ShiQ. Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems. Comput. Math. Appl., 2016, 72(3): 632-641

[34]

ShenSQ. A note on PSS preconditioners for generalized saddle point problems. Appl. Math. Comput., 2014, 237: 723-729

[35]

SimonciniV. Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl., 2002, 24(2): 368-391

[36]

StewartIWThe Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction, 2004, London. Taylor and Francis.

[37]

ZhuJL, WuYJ, YangAL. A two-parameter block triangular preconditioner for double saddle point problem arising from liquid crystal directors modeling. Numer. Algorithms, 2022, 89(3): 987-1006

Funding

Natural Science Foundation of Shanghai(23ZR1422400)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/