Coordinate-Adaptive Integration of PDEs on Tensor Manifolds

Alec Dektor , Daniele Venturi

Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1562 -1579.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1562 -1579. DOI: 10.1007/s42967-023-00357-8
Original Paper

Coordinate-Adaptive Integration of PDEs on Tensor Manifolds

Author information +
History +
PDF

Abstract

We introduce a new tensor integration method for time-dependent partial differential equations (PDEs) that controls the tensor rank of the PDE solution via time-dependent smooth coordinate transformations. Such coordinate transformations are obtained by solving a sequence of convex optimization problems that minimize the component of the PDE operator responsible for increasing the tensor rank of the PDE solution. The new algorithm improves upon the non-convex algorithm we recently proposed in Dektor and Venturi (2023) which has no guarantee of producing globally optimal rank-reducing coordinate transformations. Numerical applications demonstrating the effectiveness of the new coordinate-adaptive tensor integration method are presented and discussed for prototype Liouville and Fokker-Planck equations.

Keywords

Tensor train / Crvilinear coordinates / Step-truncation tensor methods / High-dimensional PDEs / Dynamic tensor approximation / Mathematical Sciences / Numerical and Computational Mathematics

Cite this article

Download citation ▾
Alec Dektor, Daniele Venturi. Coordinate-Adaptive Integration of PDEs on Tensor Manifolds. Communications on Applied Mathematics and Computation, 2024, 7(4): 1562-1579 DOI:10.1007/s42967-023-00357-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ArisRVectors, Tensors and the Basic Equations of Fluid Mechanics, 1990New YorkDover Publications

[2]

BaalrudSD, DaligaultJ. Mean force kinetic theory: A convergent kinetic theory for weakly and strongly coupled plasmas. Phys. Plasmas, 2019, 26: 082106.

[3]

BeylkinG, MohlenkampMJ. Numerical operator calculus in higher dimensions. PNAS, 2002, 991610246-10251.

[4]

BigoniD, Engsig-KarupAP, MarzoukYM. Spectral tensor-train decomposition. SIAM J. Sci. Comput., 2016, 384A2405-A2439.

[5]

BoelensAMP, VenturiD, TartakovskyDM. Parallel tensor methods for high-dimensional linear PDEs. J. Comput. Phys., 2018, 375: 519-539.

[6]

BoelensAMP, VenturiD, TartakovskyDM. Tensor methods for the Boltzmann-BGK equation. J. Comput. Phys., 2020, 421: 109744.

[7]

BrennanC, VenturiD. Data-driven closures for stochastic dynamical systems. J. Comput. Phys., 2018, 372: 281-298.

[8]

CercignaniCThe Boltzmann Equation and Its Applications, 1988New YorkSpringer-Verlag.

[9]

ChoH, VenturiD, KarniadakisGE. Numerical methods for high-dimensional probability density function equation. J. Comput. Phys., 2016, 315: 817-837.

[10]

ChoH, VenturiD, KarniadakisGEJinS, PareschiL. Numerical methods for high-dimensional kinetic equations. Uncertainty Quantification for Kinetic and Hyperbolic Equations, 2017Springer93-125.

[11]

DektorA, RodgersA, VenturiD. Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. J. Sci. Comput., 2021, 88361-27

[12]

DektorA, VenturiD. Dynamic tensor approximation of high-dimensional nonlinear PDEs. J. Comput. Phys., 2021, 437: 110295.

[13]

DektorA, VenturiD. Tensor rank reduction via coordinate flows. J. Comput. Phys., 2023, 491: 112378.

[14]

EtterA. Parallel ALS algorithm for solving linear systems in the hierarchical Tucker representation. SIAM J. Sci. Comput., 2016, 384A2585-A2609.

[15]

Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (final release). arXiv:1505.03027v2 (2015)

[16]

FriedricR, DaitcheA, KampsO, LülffJ, VoßkuhleM, WilczekM. The Lundgren-Monin-Novikov hierarchy: kinetic equations for turbulence. Comptes Rendus Physique, 2012, 139/10929-953.

[17]

GrasedyckL, LöbbertC. Distributed hierarchical SVD in the hierarchical Tucker format. Numer. Linear Algebra Appl., 2018, 256e2174.

[18]

GriebelM, LiG. On the decay rate of the singular values of bivariate functions. SIAM J. Numer. Anal., 2019, 562974-993.

[19]

Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Volume 21 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

[20]

HosokawaI. Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence. Phys. Rev. E, 2006, 731/2/3/4067301.

[21]

KarniadakisGE, KevrekidisIG, LuL, PerdikarisP, WangS, YangL. Physics-informed machine learning. Nature Reviews. Nat. Rev. Phys., 2021, 3: 422-440.

[22]

Khoromskij, B.N.: Tensor numerical methods for multidimensional PDEs: theoretical analysis and initial applications. In: CEMRACS 2013—Modelling and Simulation of Complex Systems: Stochastic and Deterministic Approaches, Volume 48 of ESAIM Proc. Surveys, pp. 1–28. EDP Sci., Les Ulis (2015)

[23]

KieriE, LubichC, WalachH. Discretized dynamical low-rank approximation in the presence of small singular values. SIAM J. Numer. Anal., 2016, 5421020-1038.

[24]

LundgrenTS. Distribution functions in the statistical theory of turbulence. Phys. Fluids, 1967, 105969-975.

[25]

LuoH, BewleyTR. On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems. J. Comput. Phys., 2004, 199: 355-375.

[26]

MontgomeryD. A BBGKY framework for fluid turbulence. Phys. Fluids , 1976, 19: 802-810.

[27]

OseledetsIV. Tensor-train decomposition. SIAM J. Sci. Comput., 2011, 3352295-2317.

[28]

PinkusARidge Functions, 2015CambridgeCambridge University Press.

[29]

RaissiM, KarniadakisGE. Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys., 2018, 357: 125-141.

[30]

RaissiM, PerdikarisP, KarniadakisGE. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 2019, 378: 606-707.

[31]

RodgersA, DektorA, VenturiD. Adaptive integration of nonlinear evolution equations on tensor manifolds. J. Sci. Comput., 2022, 92391-31

[32]

SchneiderR, UschmajewA. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces. J. Complexity, 2014, 30256-71.

[33]

Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R.E. (ed) Nonlinear Problems, pp. 69–98. The University of Wisconsin Press, Madison (1963)

[34]

UschmajewA, VandereyckenB. The geometry of algorithms using hierarchical tensors. Linear Algebra Appl., 2013, 4391133-166.

[35]

VenturiD. Convective derivatives and Reynolds transport in curvilinear time-dependent coordinate systems. J. Phys. A: Math. Theor., 2009, 4212125203.

[36]

VenturiD. Conjugate flow action functionals. J. Math. Phys., 2013, 5411113502.

[37]

VenturiD. The numerical approximation of nonlinear functionals and functional differential equations. Phys. Rep., 2018, 732: 1-102.

[38]

VenturiD, ChoiM, KarniadakisGE. Supercritical quasi-conduction states in stochastic rayleigh-bénard convection. Int. J. Heat Mass Transf., 2012, 55133732-3743.

Funding

Air Force Office of Scientific Research(FA9550-20-1-0174)

Army Research Office(W911NF-18-1-0309)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/