Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems

Qin-Qin Shen , Geng-Chen Yang , Chen-Can Zhou

Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1617 -1638.

PDF
Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5) : 1617 -1638. DOI: 10.1007/s42967-023-00354-x
Original Paper
research-article

Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems

Author information +
History +
PDF

Abstract

Recently, the projected Jacobi (PJ) and projected Gauss-Seidel (PGS) iteration methods have been studied for solving the horizontal linear complementarity problems (HLCPs). To further improve the convergence rates of the PJ and PGS iteration methods, by using the successive overrelaxation (SOR) matrix splitting technique, a projected SOR iteration method is introduced in this paper to solve the HLCP. Convergence analyses are carefully studied when the system matrices are strictly diagonally dominant and irreducibly diagonally dominant. The newly obtained convergence results greatly extend the current convergence theory. Finally, two numerical examples are given to show the effectiveness of the proposed PSOR iteration method and its advantages over the recently proposed PJ and PGS iteration methods.

Keywords

Horizontal linear complementarity problem (HLCP) / Matrix splitting / Projected method / Successive overrelaxation (SOR) iteration / Convergence / 65F10 / 65H10 / 65K05 / 90C33

Cite this article

Download citation ▾
Qin-Qin Shen, Geng-Chen Yang, Chen-Can Zhou. Convergence Analysis of the Projected SOR Iteration Method for Horizontal Linear Complementarity Problems. Communications on Applied Mathematics and Computation, 2025, 7(5): 1617-1638 DOI:10.1007/s42967-023-00354-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaiZ-Z. On the monotone convergence of the projected iteration methods for linear complementarity problem. Numer. Math. J. Chin. Univ. (Engl. Ser.), 1996, 5(2): 228-233

[2]

BaiZ-Z. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl., 1999, 21(1): 67-78

[3]

BaiZ-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2010, 17(6): 917-933

[4]

BaiZ-Z, GolubGH, NgMK. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626

[5]

BaiZ-Z, PanJ-YMatrix Analysis and Computations, 2021, Philadelphia. SIAM.

[6]

BaiZ-Z, ParlettBN, WangZ-Q. On generalized successive overrelaxation methods for augmented linear systems. Numer. Math., 2005, 102(1): 1-38

[7]

BaiZ-Z, YinJ-F, SuY-F. A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math., 2006, 24(4): 539-552

[8]

CaoY, DuJ, NiuQ. Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math., 2014, 272: 239-250

[9]

CaoY, YangG-C, ShenQ-Q. Convergence analysis of projected SOR iteration method for a class of vertical linear complementarity problems. Comput. Appl. Math., 2023, 424191

[10]

CottleRW, DantzigGB. A generalization of the linear complementarity problem. J. Comb. Theory A., 1970, 8(1): 79-90

[11]

CottleRW, PangJ-S, StoneREThe Linear Complementarity Problem, 1992, San Diego. Academic Press.

[12]

FujisawaT, KuhES. Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math., 1972, 22(2): 307-328

[13]

FujisawaT, KuhES. A sparse matrix method for analysis of piecewise-linear resistive networks. IEEE Trans. Circ. Theory, 1972, 19(6): 571-584

[14]

GaoX-B, WangJ. Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Intell. Syst., 2014, 7(4): 724-732

[15]

GowdaMS. Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett., 1995, 8(1): 97-100

[16]

HuangB-H, LiW. A modified SOR-like method for absolute value equations associated with second order cones. J. Comput. Appl. Math., 2022, 400113745

[17]

KoulisianisMD, PapatheodorouTS. Improving projected successive overrelaxation method for linear complementarity problems. Appl. Numer. Math., 2003, 45(1): 29-40

[18]

MezzadriF, GalliganiE. An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo, 2018, 551

[19]

MezzadriF, GalliganiE. Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl., 2019, 180: 500-517

[20]

MezzadriF, GalliganiE. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algorithms, 2020, 83(1): 201-219

[21]

MezzadriF, GalliganiE. On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication. Math. Comput. Simul., 2020, 176: 226-242

[22]

MezzadriF, GalliganiE. A generalization of irreducibility and diagonal dominance with applications to horizontal and vertical linear complementarity problems. Linear Algebra Appl., 2021, 621: 214-234

[23]

RalphD. A stable homotopy approach to horizontal linear complementarity problems. Control Cybern., 2002, 31(3): 575-600

[24]

SznajderR, GowdaMS. Generalizations of $P_{0}$- and $P$-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl., 1995, 223/224: 695-715

[25]

ZhangY. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Opt., 1994, 4(1): 208-227

[26]

ZhengH, VongS. On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity problems arising from hydrodynamic lubrication. Appl. Math. Comput., 2021, 402126165

Funding

National Natural Science Foundation of China(11771225)

Qinglan Project of Jiangsu Province

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/