Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model

Xuan Zhao , Zhongqin Xue

Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1489 -1515.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1489 -1515. DOI: 10.1007/s42967-023-00350-1
Original Paper

Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model

Author information +
History +
PDF

Abstract

An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation derived from a gradient flow in the negative order Sobolev space

H-α
,
α(0,1)
. The Fourier pseudo-spectral method is applied for the spatial approximation. The space fractional Cahn-Hilliard model poses significant challenges in theoretical analysis for variable time-stepping algorithms compared to the classical model, primarily due to the introduction of the fractional Laplacian. This issue is settled by developing a general discrete Hölder inequality involving the discretization of the fractional Laplacian. Subsequently, the unique solvability and the modified energy dissipation law are theoretically guaranteed. We further rigorously provided the convergence of the fully discrete scheme by utilizing the newly proved discrete Young-type convolution inequality to deal with the nonlinear term. Numerical examples with various interface widths and mobility are conducted to show the accuracy and the energy decay for different orders of the fractional Laplacian. In particular, we demonstrate that the adaptive time-stepping strategy, compared with the uniform time steps, captures the multiple time scale evolutions of the solution in simulations.

Keywords

Space fractional Cahn-Hilliard equation / Variable-step BDF2 / Modified discrete energy / Convergence / Adaptive time-stepping

Cite this article

Download citation ▾
Xuan Zhao, Zhongqin Xue. Efficient Variable Steps BDF2 Scheme for the Two-Dimensional Space Fractional Cahn-Hilliard Model. Communications on Applied Mathematics and Computation, 2024, 7(4): 1489-1515 DOI:10.1007/s42967-023-00350-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AcetoL, NovatiP. Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput., 2017, 39: A214-A228

[2]

AinsworthM, MaoZP. Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals, 2017, 102: 264-273

[3]

AinsworthM, MaoZP. Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal., 2017, 55: 1689-1718

[4]

AkagiG, SchimpernaG, SegattiA. Fractional Cahn-Hilliard, and porous medium equations. J. Differ. Equ., 2016, 261: 2935-2985

[5]

AkagiG, SchimpernaG, SegattiA. Convergence of solutions for the fractional Cahn-Hilliard system. J. Funct. Anal., 2019, 276: 2663-2715

[6]

AkrivisG, LiBY, LiDF. Energy-decaying extrapolated RK-SAV methods for the Allen-Cahn and Cahn-Hilliard equations. SIAM J. Sci. Comput., 2019, 41: A3703-A3727

[7]

BertozziAL, EsedoḡluS, GilletteA. Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process., 2007, 16: 285-291

[8]

BorthagarayJP, LeykekhmanD, NochettoRH. Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal., 2021, 59: 1918-1947

[9]

BoschJ, StollM. A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci., 2015, 8: 2352-2382

[10]

BuLL, MeiLQ, WangY, HouY. Energy stable numerical schemes for the fractional-in-space Cahn-Hilliard equation. Appl. Numer. Math., 2020, 158: 392-414

[11]

BuLL, WuJH, MeiLQ, WangY. Second-order linear adaptive time-stepping schemes for the fractional equation. Comput. Math. Appl., 2023, 145: 260-274

[12]

CahnJW, HilliardJE. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys., 1958, 28: 258-267

[13]

CanutoC, QuarteroniA. Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput., 1982, 38: 67-86

[14]

ChenWB, WangXM, YanY, ZhangZY. A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal., 2019, 57: 495-525

[15]

ChengKL, FengWQ, WangC, WiseSM. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math., 2019, 362: 574-595

[16]

ChengKL, WangC, WiseSM, YueXY. A second-order, weakly energy-stable pseudospectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput., 2016, 69: 1083-1114

[17]

CristiniV, LiXR, LowengrubJS, WiseSM. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol., 2009, 58: 723-763

[18]

DuQ, JuLL, LiX, QiaoZH. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys., 2018, 363: 39-54

[19]

FaustmannM, KarkulikM, MelenkJM. Local convergence of the FEM for the integral fractional Laplacian. SIAM J. Numer. Anal., 2022, 60: 1055-1082

[20]

FengXL, TangT, YangJ. Long time numerical simulations for phase-field problems using p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document}-adaptive spectral deferred correction methods. SIAM J. Sci. Comput., 2015, 37: A271-A294

[21]

FrankRL, LenzmannE, SilvestreL. Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math., 2016, 69: 1671-1726

[22]

Frohoff-HülsmannT, WrembelJ, ThieleU. Suppression of coarsening and emergence of oscillatory behavior in a Cahn-Hilliard model with nonvariational coupling. Phys. Rev. E, 2021, 103042602

[23]

GolovinAA, NepomnyashchyAA, DavisSH, ZaksMA. Convective Cahn-Hilliard models: from coarsening to roughening. Phys. Rev. Lett., 2001, 86: 1550-1553

[24]

GomezH, HughesTJR. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys., 2011, 230: 5310-5327

[25]

GuanZ, LowengrubJ, WangC. Convergence analysis for second-order accurate schemes for the periodic nonlocal and Cahn-Hilliard equations. Math. Methods Appl. Sci., 2017, 40: 377-406

[26]

HoseaME, ShampineLF. Analysis and implementation of TR-BDF2. Appl. Numer. Math., 1996, 20: 21-37

[27]

HouTL, TangT, YangJ. Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space equations. J. Sci. Comput., 2017, 72: 1214-1231

[28]

HuangJZ, YangC, WeiY. Parallel energy-stable solver for a coupled and Cahn-Hilliard system. SIAM J. Sci. Comput., 2020, 42: C294-C312

[29]

HuangX, LiDF, SunHW. Preconditioned SAV-leapfrog finite difference methods for spatial fractional Cahn-Hilliard equations. Appl. Math. Lett., 2023, 138108510

[30]

HuangX, LiDF, SunHW, ZhangF. Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. J. Sci. Comput., 2022, 92: 41

[31]

HuangYH, ObermanA. Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal., 2014, 52: 3056-3084

[32]

KhainE, SanderLM. Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. E, 2008, 77051129

[33]

LiD, QiaoZH. On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput., 2017, 70: 301-341

[34]

LiD, QuanCY, TangT. Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation. Math. Comput., 2022, 91: 785-809

[35]

LiDF, LiXX, MeiM, YuanWQ. A structure-preserving and variable-step BDF2 Fourier pseudo-spectral method for the two-mode phase field crystal model. Math. Comput. Simul., 2023, 205: 483-506

[36]

LiaoH-L, JiBQ, WangL, ZhangZM. Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn-Hilliard model. J. Sci. Comput., 2022, 92: 52

[37]

LiaoH-L, ZhangZM. Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comput., 2021, 90: 1207-1226

[38]

LischkeaA, PangGF, GulianaM, SongFY, GlusaC, ZhengXN, MaoZP, CaiW, MeerschaertMM, AinsworthM, Em KarniadakisG. What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys., 2020, 404109009

[39]

LiuHL, YinPM. Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. J. Comput. Appl. Math., 2021, 390113375

[40]

LuoFS, TangT, XieHH. Parameter-free time adaptivity based on energy evolution for the Cahn-Hilliard equation. Commun. Comput. Phys., 2016, 19: 1542-1563

[41]

MindenV, YingL. A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput., 2020, 42: A878-A900

[42]

ShenJ, TangT, WangL-LSpectral Methods: Algorithms, Analysis and Applications, 2011Berlin HeidelbergSpringer-Verlag

[43]

ShenJ, YangXF. Numerical approximations of and Cahn-Hilliard equations. Discret Contin. Dyn. Syst., 2010, 28: 1669-1691

[44]

SongFY, XuCJ, Em KarniadakisG. A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng., 2016, 305: 376-404

[45]

TangT, WangL-L, YuanHF, ZhouT. Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput., 2020, 42: A585-A611

[46]

TóthGI, ZarifiM, KvammeB. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids. Phys. Rev. E, 2016, 93013126

[47]

WangF, ChenHZ, WangH. Finite element simulation and efficient algorithm for fractional Cahn-Hilliard equation. J. Comput. Appl. Math., 2019, 356: 248-266

[48]

Wei, Y.F., Zhang, J.W., Zhao, C.C., Zhao, Y.M.: A unconditionally energy dissipative, adaptive IMEX BDF2 scheme and its error estimates for Cahn-Hilliard equation on generalized SAV approach. arXiv:2212.02018v1 (2022)

[49]

WengZF, ZhaiSY, FengXL. A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model., 2017, 42: 462-477

[50]

XuT, WangFW, LyuSJ, AnhVV. Numerical approximation of 2D multi-term time and space fractional Bloch-Torrey equations involving the fractional Laplacian. J. Comput. Appl. Math., 2021, 393113519

[51]

ZhangZJ, DengWH, Em KarniadakisG. A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. Numer. Anal., 2018, 56: 3010-3039

[52]

ZhangZR, QiaoZH. An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun. Comput. Phys., 2012, 11: 1261-1278

[53]

Zhao, C.C., Yang, R.Y., Di, Y.N., Zhang, J.W.: Sharp error estimate of variable time-step IMEX BDF2 scheme for parabolic integro-differential equations with nonsmooth initial data arising in finance. arXiv:2201.09322v1 (2022)

[54]

ZhaoY-L, LiM, OstermannA, GuX-M. An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation. BIT Numer. Math., 2021, 61: 1061-1092

Funding

National Natural Science Foundation of China(11701081)

State Key Program of National Natural Science Foundation of China(61833005)

ZhiShan Youth Scholar Program of SEU

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

485

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/