PDF
Abstract
In this paper, for generalized two-dimensional delay space-fractional Fisher equations with mixed boundary conditions, we present the stability and convergence computed by a novel numerical method. The unconditional stability of analytic solutions is first derived. Next, we have established the linear \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}
-method with the Grünwald-Letnikov operator, which has the first-order accuracy in spatial dimensions. Moreover, approaches involved error estimations and inequality reductions are utilized to prove the stability and convergence of numerical solutions under different values of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}
. Eventually, we implement a numerical experiment to validate theoretical conclusions, where the interaction impacts of fractional derivatives have been further analyzed by applying two different harmonic operators.
Keywords
Space-fractional delay Fisher equation
/
Grünwald-Letnikov operator
/
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}
-method')">Linear \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}
-method
/
Stability
/
Convergence
Cite this article
Download citation ▾
Jing Chen, Qi Wang.
Numerical Stability and Convergence for Delay Space-Fractional Fisher Equations with Mixed Boundary Conditions in Two Dimensions.
Communications on Applied Mathematics and Computation, 2024, 7(4): 1462-1488 DOI:10.1007/s42967-023-00346-x
| [1] |
AchouriT, AyadiM, HabbalA, YahyaouiB. Numerical analysis for the two-dimensional Fisher-Kolmogorov-Petrovski-Piskunov equation with mixed boundary condition. J. Appl. Math. Comput., 2021, 6863589-3614
|
| [2] |
AhmadS, UllahA, PartohaghighiM, SaifullahS, AkgulA, JaradF. Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Math., 2022, 734778-4792
|
| [3] |
ArfaouiH, MakhloufAB. Some results for a class of two-dimensional fractional hyperbolic differential systems with time delay. J. Appl. Math. Comput., 2021, 6842389-2405
|
| [4] |
AtanganaA. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput., 2016, 273: 948-956
|
| [5] |
Blanco-CocomL, Avila-ValesE. Convergence and stability analysis of the θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}-method for delayed diffusion mathematical models. Appl. Math. Comput., 2014, 231: 16-25
|
| [6] |
ButzerPL, DiekmeisW, JansenH, NesselRJ. Alternative forms with orders of the Lax equivalence theorem in Banach spaces. Computing., 1977, 174335-342
|
| [7] |
CelikC, DumanM. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 2012, 23141743-1750
|
| [8] |
ChenS, LiuF, TurnerI, AnhV. An implicit numerical method for the two-dimensional fractional percolation equation. Appl. Math. Comput., 2013, 21994322-4331
|
| [9] |
Corti, M., Antonietti, P.F., Bonizzoni, F., Dede, L., Quarteroni, A.: Discontinuous Galerkin methods for Fisher-Kolmogorov equation with application to α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document}-Synuclein spreading in Parkinson’s disease. Comput. Methods Appl. Mech. Eng. 417, 116450 (2023)
|
| [10] |
DehghanM, AbbaszadehM. A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. Appl., 2018, 7582903-2914
|
| [11] |
DemirA, BayrakMA, OzbilgeE. An approximate solution of the time-fractional Fisher equation with small delay by residual power series method. Math. Probl. Eng., 2018, 2018: 1-8
|
| [12] |
El-DanafTS, HadhoudAR. Computational method for solving space fractional Fisher’s nonlinear equation. Math. Method. Appl. Sci., 2013, 375657-662
|
| [13] |
GarmanjaniG, CavorettoR, EsmaeilbeigiM. A RBF partition of unity collocation method based on finite difference for initial-boundary value problems. Comput. Math. Appl., 2018, 75114066-4090
|
| [14] |
HaoZ, ZhangZ, DuR. Fractional centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys., 2021, 424: 109851-109868
|
| [15] |
HendyAS, ZakyMA, De StaelenRH. A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay. Appl. Numer. Math., 2021, 169: 108-121
|
| [16] |
HornR, JohnsonCMatrix Analysis, 1985CambridgeCambridge University Press
|
| [17] |
IlatiM. Analysis and application of the interpolating element-free Galerkin method for extended Fisher-Kolmogorov equation which arises in brain tumor dynamics modeling. Numer. Algorithms, 2019, 852485-502
|
| [18] |
IzadiM, SrivastavaHM. An optimized second order numerical scheme applied to the non-linear Fisher’s reaction-diffusion equation. J. Interdiscip. Math., 2022, 252471-492
|
| [19] |
KenkreV. Results from variants of the Fisher equation in the study of epidemics and bacteria. Phys. A., 2004, 3421/2242-248
|
| [20] |
KwakDY, KwonHJ, LeeS. Multigrid algorithm for cell centered finite difference on triangular meshes. Appl. Math. Comput., 1999, 105: 77-85
|
| [21] |
LiuF, ChenS, TurnerI, BurrageK, AnhV. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Open. Phys., 2013, 11101221-1232
|
| [22] |
LiuMZ, SpukerMN. The stability of the θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}-methods in the numerical solution of delay differential equations. IMA. J. Numer. Anal., 1990, 10: 31-48
|
| [23] |
LiuZ, ZengS, BaiY. Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal., 2016, 191188-211
|
| [24] |
Macias-DiazJ. A bounded numerical method for approximating a hyperbolic and convective generalization of Fisher’s model with nonlinear damping. Appl. Math. Lett., 2012, 256946-951
|
| [25] |
Majeed, A., Kamran, M., Abbas, M., Singh, J.: An efficient numerical technique for solving time-fractional generalized Fisher’s equation. Front. Phys. 8, 293 (2020)
|
| [26] |
MeerschaertMM, SchefflerHP, TadjeranC. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys., 2006, 211: 249-261
|
| [27] |
OruçO. An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher-Kolmogorov equation. Eng. Comput., 2019, 363839-856
|
| [28] |
OzkoseF, YavuzM, SenelMT, HabbireehR. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos Solitons Fractals, 2022, 157: 111954-111978
|
| [29] |
PanX, ShuH, WangL, WangXS. Dirichlet problem for a delayed diffusive hematopoiesis model. Nonlinear Anal. Real. World Appl., 2019, 48: 493-516
|
| [30] |
RashidS, KubraKT, SultanaS, AgarwalP, OsmanM. An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method. J. Comput. Appl. Math., 2022, 413: 114378-114401
|
| [31] |
RoulP, RohilV. A high order numerical technique and its analysis for nonlinear generalized Fisher’s equation. J. Comput. Appl. Math., 2022, 406: 114047-114065
|
| [32] |
SamkoSG, KilbasAA, MarichevOIFractional Integrals and Derivatives: Theory and Applications. Transl. from Russian, 1993New YorkGordon and Breach
|
| [33] |
ShakeelM, HussainI, AhmadH, AhmadI, ThounthongP, ZhangYF. Meshless technique for the solution of time-fractional partial differential equations having real-world applications. J. Funct. Spaces, 2020, 2020: 1-17
|
| [34] |
SunN, FangJ. Propagation dynamics of Fisher-KPP equation with time delay and free boundaries. Calc. Var. Partial Differential Equations, 2019, 58: 148-186
|
| [35] |
ThomasJNumerical Partial Differential Equations: Finite Difference Methods, 1998BerlinSpringer
|
| [36] |
TravisCC, WebbGF. Existence and stability for partial functional differential equations. Trans. Am. Math. Soc., 1974, 200: 395-418
|
| [37] |
WangF, KhanMN, AhmadI, AhmadH, Abu-ZinadahH, ChuY. Numerical solution of travelling waves in chemical kinetics: time-fractional Fishers equations. Fractals., 2022, 3022240051-2240062
|
| [38] |
WuF, LiD, WenJ, DuanJ. Stability and convergence of compact finite difference method for parabolic problems with delay. Appl. Math. Comput., 2018, 3229129-139
|
| [39] |
YangS. Numerical simulation for the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term. Int. J. Comput. Math., 2018, 96101957-1978
|
| [40] |
ZakyMA, HendyAS, Macias-DiazJE. Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions. J. Sci. Comput., 2020, 82: 13-40
|
| [41] |
ZhangJ, WeiP, WangM. The investigation into the exact solutions of the generalized time-delayed Burgers-Fisher equation with positive fractional power terms. Appl. Math. Model., 2012, 3652192-2196
|
| [42] |
ZhangQ, LiT. Asymptotic stability of compact and linear θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta$$\end{document}-methods for space fractional delay generalized diffusion equation. J. Sci. Comput., 2019, 8132413-2446
|
| [43] |
ZhangT, LiY. Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations. Appl. Math. Lett., 2022, 124: 107709-107717
|
| [44] |
ZhaoL, DengW, HesthavenJS. Characterization of image spaces of Riemann-Liouville fractional integral operators on Sobolev spaces Wm,p(Ω)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W^{m, p}(\varOmega )$$\end{document}. Science China Mathematics, 2020, 64122611-2636
|
| [45] |
ZhuX, NieY, WangJ, YuanZ. A numerical approach for the Riesz space-fractional Fisher’ equation in two-dimensions. Int. J. Comput. Math., 2015, 942296-315
|
Funding
National Natural Science Foundation of China(11201084)
RIGHTS & PERMISSIONS
Shanghai University