Variational and Numerical Approximations for Higher Order Fractional Sturm-Liouville Problems

Divyansh Pandey , Prashant K. Pandey , Rajesh K. Pandey

Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1398 -1418.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1398 -1418. DOI: 10.1007/s42967-023-00340-3
Original Paper

Variational and Numerical Approximations for Higher Order Fractional Sturm-Liouville Problems

Author information +
History +
PDF

Abstract

This paper is devoted to studying the variational approximation for the higher order regular fractional Sturm-Liouville problems (FSLPs). Using variational principle, we demonstrate that the FSLP has a countable set of eigenvalues and corresponding unique eigenfunctions. Furthermore, we establish two results showing that the eigenfunctions corresponding to distinct eigenvalues are orthogonal, and the smallest (first) eigenvalue is the minimizer of the functional. To validate the theoretical result, we also present a numerical method using polynomials

Φj(t)=tj+1(1-t)2
for
j=1,2,3,
as a basis function. Further, the Lagrange multiplier method is used to reduce the fractional variational problem into a system of algebraic equations. In order to find the eigenvalues and eigenfunctions, we solve the algebraic system of equations. Further, the analytical convergence and the absolute error of the method are analyzed.

Keywords

Fractional variational analysis / Fractional Sturm-Liouville problem (FSLP) / Calculus of variations

Cite this article

Download citation ▾
Divyansh Pandey, Prashant K. Pandey, Rajesh K. Pandey. Variational and Numerical Approximations for Higher Order Fractional Sturm-Liouville Problems. Communications on Applied Mathematics and Computation, 2024, 7(4): 1398-1418 DOI:10.1007/s42967-023-00340-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgrawalOP. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 2002, 2721368-379

[2]

AgrawalOP. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor., 2007, 40246287

[3]

AgrawalOP. Generalized multiparameters fractional variational calculus. Int. J. Differ. Equ., 2012, 2012: 1

[4]

AgrawalOP, HasanMM, TangpongXW. A numerical scheme for a class of parametric problem of fractional variational calculus. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 2011, 54785: 165-171

[5]

AkdoganZ, YakarA, DemirciM. Discontinuous fractional Sturm-Liouville problems with transmission conditions. Appl. Math. Comput., 2019, 350: 1-10

[6]

AllahverdievBP, TunaH, YalçinkayaY. Conformable fractional Sturm-Liouville equation. Math. Methods Appl. Sci., 2019, 42103508-3526

[7]

Al-MdallalQ, Al-RefaiM, SyamM, Al-SrihinMDK. Theoretical and computational perspectives on the eigenvalues of fourth-order fractional Sturm-Liouville problem. Int. J. Comput. Math., 2018, 9581548-1564

[8]

AmreinWO, HinzAM, PearsonDBSturm-Liouville Theory: Past and Present, 2005BerlinSpringer

[9]

ApostolTM, AblowCM. Mathematical analysis. Phys. Today, 1958, 11732

[10]

CarpinteriA, MainardiFFractals and Fractional Calculus in Continuum Mechanics, 2014BerlinSpringer378

[11]

DehestaniH, OrdokhaniY. An optimum method for fractal–fractional optimal control and variational problems. Int. J. Dyn. Control., 2023, 111229-241

[12]

DehghanM, MingarelliAB. Fractional Sturm-Liouville eigenvalue problems, I. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, 2020, 114246

[13]

FerreiraM, RodriguesMM, VieiraN. A fractional analysis in higher dimensions for the Sturm-Liouville problem. Fract. Calc. Appl. Anal., 2021, 242585-620

[14]

FerreiraM, RodriguesMM, VieiraN. Application of the fractional Sturm-Liouville theory to a fractional Sturm-Liouville telegraph equation. Complex Anal. Oper. Theory, 2021, 15587

[15]

GoelE, PandeyRK, YadavS, AgrawalOP. A numerical approximation for generalized fractional Sturm-Liouville problem with application. Math. Comput. Simul., 2023, 207: 417-436

[16]

HajjiMA, Al-MdallalQM, AllanFM. An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems. J. Comput. Phys., 2014, 272: 550-558

[17]

Khosravian-ArabH, DehghanM, EslahchiM. Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys., 2015, 299: 526-560

[18]

Khosravian-ArabH, DehghanM, EslahchiM. Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys., 2017, 338: 527-566

[19]

KilbasAA, SrivastavaHM, TrujilloJJTheory and Applications of Fractional Differential Equations, 2006BerlinElsevier204

[20]

Klimek, M., Agrawal, O.P.: On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(0, 1)$$\end{document}. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 284–289. IEEE, New York (2012)

[21]

KlimekM, AgrawalOP. Fractional Sturm-Liouville problem. Comput. Math. Appl., 2013, 665795-812

[22]

KlimekM, OdzijewiczT, MalinowskaAB. Variational methods for the fractional Sturm-Liouville problem. J. Math. Anal. Appl., 2014, 4161402-426

[23]

LiJ, QiJ. Eigenvalue problems for fractional differential equations with right and left fractional derivatives. Appl. Math. Comput., 2015, 256: 1-10

[24]

LoftiA, YousefiSA. A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math., 2013, 2371633-643

[25]

MachadoJT, MataME. Pseudo phase plane and fractional calculus modelling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul., 2015, 221–3396-406

[26]

Magin, R.L.: Fractional calculus in bioengineering. In: Critical ReviewsTM\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$^{\text{TM}}$$\end{document} in Biomedical Engineering, vol. 32(1). Begel House Inc., London (2004)

[27]

MansourZS. Variational methods for fractional q-Sturm-Liouville problems. Bound. Value Problems, 2016, 201611-31

[28]

McLeanW, McLeanWCHStrongly Elliptic Systems and Boundary Integral Equations, 2000CambridgeCambridge University Press

[29]

MillerKS, RossBAn Introduction to the Fractional Calculus and Fractional Differential Equations, 1993LondonWilley

[30]

PandeyD, KumarK, PandeyRK. Approximation schemes for a quadratic type generalized isoperimetric constraint fractional variational problems. J. Anal., 2023, 2023: 1-28

[31]

PandeyD, PandeyRK, AgarwalRP. Numerical approximation of fractional variational problems with several dependent variables using Jacobi poly-fractonomials. Math. Comput. Simul., 2023, 203: 28-43

[32]

Pandey, R.K., Agrawal, O.P.: Comparison of four numerical schemes for isoperimetric constraint fractional variational problems with A-operator. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 57199. American Society of Mechanical Engineers V009–7A025, New York (2015)

[33]

PandeyRK, AgrawalOP. Numerical scheme for a quadratic type generalized isoperimetric constraint variational problems with A-operator. J. Comput. Nonlinear Dyn., 2015, 102021003

[34]

PandeyPK, PandeyRK, AgrawalOP. Variational approximation for fractional Sturm-Liouville problem. Fract. Cal. Appl. Anal., 2020, 233861-874

[35]

PandeyRK, PandeyPK, AgrawalOP. Sturm’s theorems for generalized derivative and generalized Sturm-Liouville problem. Math. Commun., 2023, 281141-152

[36]

PodlubnyIFractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, 1998New YorkElsevier198

[37]

RieweF. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E, 1996, 5321890

[38]

RiveroM, TrujilloJJ, VelascoMP. A fractional approach to the Sturm-Liouville problem. Open Phys., 2013, 11101246-1254

[39]

SabzikarF, MeerschaertMM, ChenJ. Tempered fractional calculus. J. Comput. Phys., 2015, 293: 14-28

[40]

SyamMI, Al-MdallalQM, Al-RefaiM. A numerical method for solving a class of fractional Sturm-Liouville eigenvalue problems. Commun. Numer. Anal., 2017, 2: 217-232

[41]

TianY, DuZ, GeW. Existence results for discrete Sturm-Liouville problem via variational methods. J. Differ. Equ. Appl., 2007, 136467-478

[42]

Van BruntB. Application to eigenvalue problems. Calc. Var., 2004, 2004: 103-118

[43]

XuY, AgrawalOP. Models and numerical solutions of generalized oscillator equations. J. Vib. Acoust., 2014, 1365050903

[44]

YadavS, PandeyRK, PandeyPK. Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation. Int. J. Numer. Methods Fluids, 2021, 933610-627

[45]

YakarA, AkdoganZ. On the fundamental solutions of a discontinuous fractional boundary value problem. Adv. Differ. Equ., 2017, 201711-15

[46]

YousefiS, DehghanM, LotfiA. Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl., 2011, 623987-995

[47]

ZayernouriM, AinsworthM, KarniadakisGE. Tempered fractional Sturm-Liouville eigenproblems. SIAM J. Sci. Comput., 2015, 374A1777-A1800

[48]

ZayernouriM, KarniadakisGE. Fractional Sturm-Liouville eigen problems: theory and numerical approximation. J. Comput. Phys., 2013, 252: 495-517

[49]

ZettlASturm-Liouville Theory, 2010New YorkAmerican Mathematical Soc.121

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/