PDF
Abstract
A new set of generalized Jacobi rational functions of the first and second kinds, GJRFs-1 and GJRFs-2, which are mutually orthogonal in \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{2}(0,\infty)$$\end{document}
, are introduced and they are analytical eigensolutions to a new family of singular fractional Sturm-Liouville problems (SFSLPs) of the first and second kinds as non-polynomial functions. We establish some properties and optimal approximation results for these GJRFs-1 and GJRFs-2 in non-uniformly weighted Sobolev spaces involving fractional derivatives, which play important roles in the related spectral methods for a class of fractional differential equations. We develop Jacobi rational-Gauss quadrature type formulae and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^{2}$$\end{document}
-orthogonal projections based on GJRFs-1 and GJRFs-2. As examples of applications, the two quadrature rules are proposed for Fermi-Dirac and Bose-Einstein integrals. Using various orthogonal properties of GJRFs-1 and GJRFs-2, the Petrov-Galerkin methods are proposed for fractional initial value problems and fractional boundary value problems. Numerical results demonstrate its efficient algorithm, and spectral accuracy for treating the above-mentioned classes of problems. The suggested numerical scheme provides an applicable substitutional to other competitive methods in the recent method-related accuracy.
Keywords
Generalized Jacobi rational approximation
/
Fractional derivatives
/
Fractional Sturm-Liouville problems
/
Unbounded domains
/
Approximation results
/
Spectral accuracy
/
Mathematical Sciences
/
Pure Mathematics
Cite this article
Download citation ▾
Tarek Aboelenen.
Efficient and Accurate Spectral Method for Solving Fractional Differential Equations on the Half Line Using Orthogonal Generalized Rational Jacobi Functions.
Communications on Applied Mathematics and Computation, 2024, 7(4): 1419-1443 DOI:10.1007/s42967-023-00337-y
| [1] |
Aboelenen, T.: A direct discontinuous Galerkin method for fractional convection-diffusion and Schrödinger type equations. arXiv:1708.04546 (2017)
|
| [2] |
AboelenenT. A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul., 2018, 54: 428-452
|
| [3] |
AboelenenT. Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger-type equations. Nonlinear Dyn., 2018, 922395-413
|
| [4] |
AboelenenT. Discontinuous Galerkin methods for fractional elliptic problems. Comput. Appl. Math., 2020, 3921-23
|
| [5] |
AboelenenT. Stability analysis and error estimates of implicit-explicit Runge-Kutta local discontinuous Galerkin methods for nonlinear fractional convection-diffusion problems. Comput. Appl. Math., 2022, 416256
|
| [6] |
AboelenenT, BakrSA, El-HawaryHM. Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain. Int. J. Comput. Math., 2017, 943570-596
|
| [7] |
AbramowitzMHandbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, 1974MineolaDover Publications, Incorporated
|
| [8] |
Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Association of Physics Teachers, College Park, MD (1988)
|
| [9] |
BarkaiE, MetzlerR, KlafterJ. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E, 2000, 611132
|
| [10] |
BashourM, DalirM. Applications of fractional calculus. Appl. Math. Sci., 2010, 4211021-1032
|
| [11] |
BilerP, FunakiT, WoyczynskiWA. Fractal Burgers equations. J. Differ. Equ., 1998, 14819-46
|
| [12] |
Chen, L., Mao, Z., Li, H.: Jacobi-Galerkin spectral method for eigenvalue problems of Riesz fractional differential equations. arXiv:1803.03556 (2018)
|
| [13] |
ChenS, ShenJ, WangL-L. Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput., 2016, 853001603-1638
|
| [14] |
CuiM. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys., 2009, 228207792-7804
|
| [15] |
De PabloA, QuirósF, RodríguezA, VázquezJL. A fractional porous medium equation. Adv. Math., 2011, 22621378-1409
|
| [16] |
DengW. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal., 2009, 471204-226
|
| [17] |
DengW, HesthavenJS. Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal., 2013, 4761845-1864
|
| [18] |
DiethelmK, FordNJ, FreedAD. Detailed error analysis for a fractional ADAMs method. Numer. Algorithms, 2004, 36131-52
|
| [19] |
ErvinVJ, RoopJP. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations, 2006, 223558-576
|
| [20] |
FordNJ, XiaoJ, YanY. A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal., 2011, 143454-474
|
| [21] |
GautschiW. On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Commun., 1993, 742233-238
|
| [22] |
GautschiWOrthogonal Polynomials: Computation and Approximation, 2004OxfordOxford University Press
|
| [23] |
GuD-Q, WangZ-Q. Orthogonal Jacobi rational functions and spectral methods on the half line. J. Sci. Comput., 2021, 8811-27
|
| [24] |
GuoB-Y, ShenJ, WangL-L. Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math., 2009, 5951011-1028
|
| [25] |
GuoB-Y, WangL-L, WangZ-Q. Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal., 2006, 4362567-2589
|
| [26] |
GuoB-Y, YiY-G. Generalized Jacobi rational spectral method and its applications. J. Sci. Comput., 2010, 432201-238
|
| [27] |
GuoB-Y, ZhangX-Y. A new generalized Laguerre spectral approximation and its applications. J. Comput. Appl. Math., 2005, 1812342-363
|
| [28] |
HaleN, OlverS. A fast and spectrally convergent algorithm for rational-order fractional integral and differential equations. SIAM J. Sci. Comput., 2018, 404A2456-A2491
|
| [29] |
HashimI, AbdulazizO, MomaniS. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul., 2009, 143674-684
|
| [30] |
HilferRApplications of Fractional Calculus in Physics, 2000SingaporeWorld Scientific
|
| [31] |
JafariH, Daftardar-GejjiV. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput., 2006, 1802488-497
|
| [32] |
KhaderM. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul., 2011, 1662535-2542
|
| [33] |
Khosravian-ArabH, DehghanM, EslahchiM. Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys., 2015, 299: 526-560
|
| [34] |
Khosravian-ArabH, DehghanM, EslahchiM. Fractional spectral and pseudo-spectral methods in unbounded domains: theory and applications. J. Comput. Phys., 2017, 338: 527-566
|
| [35] |
KilbasAA, SrivastavaHM, TrujilloJJTheory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies), 2006New YorkElsevier Science Inc.
|
| [36] |
LinY, XuC. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys., 2007, 22521533-1552
|
| [37] |
LischkeA, ZayernouriM, KarniadakisGE. A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput., 2017, 393A922-A946
|
| [38] |
Maginr. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng., 2004, 3211-104
|
| [39] |
MillerKSThe Weyl Fractional Calculus, 1975BerlinSpringer
|
| [40] |
MillerK, RossBAn Introduction to the Fractional Calculus and Fractional Differential Equations, 1993New YorkWiley
|
| [41] |
MustaphaK, McLeanW. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms, 2011, 562159-184
|
| [42] |
OldhamKB. Fractional differential equations in electrochemistry. Adv. Eng. Softw., 2010, 4119-12
|
| [43] |
PichonB. Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Commun., 1989, 552127-136
|
| [44] |
RawashdehE. Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput., 2006, 17611-6
|
| [45] |
ScalasE, GorenfloR, MainardiF. Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl., 2000, 2841–4376-384
|
| [46] |
ShenJ. Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal., 2000, 3841113-1133
|
| [47] |
ShengC, ShenJ, TangT, WangL-L, YuanH. Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains. SIAM J. Numer. Anal., 2020, 5852435-2464
|
| [48] |
ShengH, ChenY, QiuTFractional Processes and Fractional-Order Signal Processing: Techniques and Applications, 2011BerlinSpringer Science & Business Media
|
| [49] |
TangT, WangL-L, YuanH, ZhouT. Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput., 2020, 422A585-A611
|
| [50] |
Tang, T., Yuan, H., Zhou, T.: Hermite spectral collocation methods for fractional PDEs in unbounded domains. arXiv:1801.09073 (2018)
|
| [51] |
WangZ-Q, GuoB-Y. Jacobi rational approximation and spectral method for differential equations of degenerate type. Math. Comput., 2008, 77262883-907
|
| [52] |
XuQ, HesthavenJS. Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal., 2014, 521405-423
|
| [53] |
YiY-G, GuoB-Y. Generalized Jacobi rational spectral method on the half line. Adv. Comput. Math., 2012, 3711-37
|
| [54] |
YusteSB, AcedoL. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal., 2005, 4251862-1874
|
| [55] |
ZayernouriM, KarniadakisGE. Fractional spectral collocation method. SIAM J. Sci. Comput., 2014, 361A40-A62
|
| [56] |
ZengF, MaoZ, KarniadakisGE. A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput., 2017, 391A360-A383
|
RIGHTS & PERMISSIONS
Shanghai University