The L2-1σ/LDG Method for the Caputo Diffusion Equation with a Variable Coefficient

Qiaoqiao Dai , Dongxia Li

Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1378 -1397.

PDF
Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1378 -1397. DOI: 10.1007/s42967-023-00326-1
Original Paper

The L2-1σ/LDG Method for the Caputo Diffusion Equation with a Variable Coefficient

Author information +
History +
PDF

Abstract

In this paper, an efficient method is proposed to solve the Caputo diffusion equation with a variable coefficient. Since the solution of such an equation in general has a typical weak singularity near the initial time

t=0
, the time-fractional derivative with order in (0, 1) is discretized by L2-1σ formula on nonuniform meshes. For the spatial derivative, the local discontinuous Galerkin (LDG) method is employed. A complete theoretical analysis of the numerical stability and convergence of the derived scheme is given using a discrete fractional Gronwall inequality. Numerical experiments demonstrate the validity of the established scheme and the accuracy of the theoretical analysis results.

Keywords

Local discontinuous Galerkin (LDG) method / Nonuniform meshes / L2-1σ method / Stability analysis / Error estimate / Variable coefficient

Cite this article

Download citation ▾
Qiaoqiao Dai, Dongxia Li. The L2-1σ/LDG Method for the Caputo Diffusion Equation with a Variable Coefficient. Communications on Applied Mathematics and Computation, 2023, 7(4): 1378-1397 DOI:10.1007/s42967-023-00326-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AhmadiniaM, SafariZ, FouladiS. Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations. BIT, 2018, 583533-554.

[2]

AlikhanovAA. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys., 2015, 280: 424-438.

[3]

CastilloP, CockburnB, SchötzauD, SchwabC. Optimal a priori error estimates for the hp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$hp$$\end{document}-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comp., 2002, 71: 455-478.

[4]

ChenH, StynesM. Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput., 2019, 791624-647.

[5]

CockburnB, KanschatG, PerugiaI, SchötzauD. Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal., 2001, 39: 264-285.

[6]

CockburnB, ShuC-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 3562440-2463.

[7]

DongB, ShuC-W. Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal., 2009, 47: 3240-3268.

[8]

HuangCB, StynesM. Optimal spatial H1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^1$$\end{document}-norm analysis of a finite element method for a time-fractional diffusion equation. J. Comput. Appl. Math., 2020, 367. 112435

[9]

HuangCB, StynesM. α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document}-Robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms, 2021, 8741749-1766.

[10]

JinB, LiBY, ZhouZ. Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comp., 2019, 88: 2157-2186.

[11]

LiCP, CaiMTheory and Numerical Approximations of Fractional Integrals and Derivatives, 2019PhiladelphiaSIAM.

[12]

LiCP, LiDX, WangZ. L1/LDG method for the generalized time-fractional Burgers equation. Math. Comput. Simulation, 2021, 187: 357-378.

[13]

LiCP, LiDX, WangZ. L1/LDG method for the generalized time-fractional Burgers equation in two spatial dimensions. Commun. Appl. Math. Comput., 2022.

[14]

Li, C.P., Li, D.X., Wang, Z.: CDG method for the fractional convection equation. In: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, pp. 1–6. IEEE (2023) https://doi.org/10.1109/ICFDA58234.2023.10153229

[15]

LiCP, LiZQ, WangZ. Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput., 2020, 8521-27.

[16]

LiCP, WangZ. Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution. Math. Comput. Simulation, 2021, 182: 838-857.

[17]

LiaoHL, LiDF, ZhangJW. Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal., 2018, 56: 1112-1133.

[18]

LiaoHL, McLeanW, ZhangJW. A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal., 2019, 571218-237.

[19]

LiaoHL, McLeanW, ZhangJW. A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys., 2021, 302567-601.

[20]

MustaphaK. An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes. SIAM J. Numer. Anal., 2020, 5821319-1338.

[21]

MustaphaK, AbdallahB, FuratiKM, NourM. A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients. Numer. Algorithms, 2016, 732517-534.

[22]

OldhamKB, SpanierJThe Fractional Calculus, 1974New YorkAcademic Press

[23]

PodlubnyIFractional Differential Equations, 1999San DiegoAcademic Press

[24]

RenJC, LiaoHL, ZhangJW, ZhangZM. Sharp H1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^1$$\end{document}-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. J. Comput. Appl. Math., 2021, 389. 113352

[25]

SamkoSG, KilbasAA, MarichevOIFractional Integrals and Derivatives: Theory and Applications, 1993AmsterdamGordon and Breach Science Publishers

[26]

StynesM, ORiordanE, GraciaJL. Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation.. SIAM J. Numer. Anal., 2017, 55: 1057-1079.

[27]

WeiLL, HeYN. Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model., 2014, 3841511-1522.

[28]

ZengYH, TanZJ. Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations. Appl. Math. Comput., 2022, 43412740816

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/