Ramsey Numbers of Stars Versus Generalised Wheels

Yiran Zhang , Yuejian Peng

Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1333 -1349.

PDF
Communications on Applied Mathematics and Computation ›› 2024, Vol. 7 ›› Issue (4) : 1333 -1349. DOI: 10.1007/s42967-023-00316-3
Original Paper

Ramsey Numbers of Stars Versus Generalised Wheels

Author information +
History +
PDF

Abstract

For two graphs G and H,  the Ramsey number R(GH) is the smallest integer n such that for any n-vertex graph, either it contains G or its complement contains H. Let

Sn
be a star of order n and
Ws,m
be a generalised wheel
KsCm.
Previous studies by Wang and Chen (Graphs Comb 35(1):189–193, 2019) and Chng et al. (Discret Math 344(8):112440, 2021) imply that a tree is
Ws,4
-good,
Ws,5
-good,
Ws,6
-good, and
Ws,7
-good for
s2.
In this paper, we study the Ramsey numbers
R(Sn,Ws,8),
and our results indicate that trees are not always
Ws,8
-good.

Keywords

Ramsey number / Star / Generalised wheel

Cite this article

Download citation ▾
Yiran Zhang, Yuejian Peng. Ramsey Numbers of Stars Versus Generalised Wheels. Communications on Applied Mathematics and Computation, 2024, 7(4): 1333-1349 DOI:10.1007/s42967-023-00316-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaskoroET, SurahmatS, NababanSM, MillerM. On Ramsey numbers for trees versus wheels of five or six vertices. Graphs Combin., 2002, 184717-721.

[2]

BondyJA. Pancyclic graphs I. J. Combin. Theory Ser. B, 1971, 11180-84.

[3]

BrandtS, FaudreeR, GoddardW. Weakly pancyclic graphs. J. Graph Theory, 1998, 273141-176.

[4]

BurrSA. Ramsey numbers involving graphs with long suspended paths. J. Lond. Math. Soc., 1981, 243405-413.

[5]

ChenY, ZhangY, ZhangK. The Ramsey numbers of stars versus wheels. Eur. J. Combin., 2004, 2571067-1075.

[6]

ChngZ, TanT, WongK. On the Ramsey numbers for the tree graphs versus certain generalised wheel graphs. Discret. Math., 2021, 3448. 112440

[7]

DiracGA. Some theorems on abstract graphs. Proc. Lond. Math. Soc., 1952, 2: 69-81.

[8]

Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdős. In: Combinatorial Theory and Its Applications, II (Proc. Colloq., Balatonfured, 1969), pp. 601–623 (1970)

[9]

Hasmawati, E.: Bilangan Ramsey: untuk kombinasi Graf Bintang terhadap Graf Roda. Tesis Magister, Departemen Matematika ITB, Indonesia (2004)

[10]

HasmawatiE, BaskoroT, AssiyatunH. Star-wheel Ramsey numbers. J. Comb. Math. Combin. Comput., 2005, 55: 123-128

[11]

LiB, SchiermeyerI. On star-wheel Ramsey numbers. Graphs Combin., 2016, 322733-739.

[12]

LinQ, LiY, DongL. Ramsey goodness and generalized stars. Eur. J. Combin., 2010, 3151228-1234.

[13]

Surahmat, S., Baskoro, E.T.: On the Ramsey number of a path or a star versus W4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_4$$\end{document} or W5\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_5$$\end{document}. In: Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia), July 14–17, pp. 174–178 (2001)

[14]

WangL, ChenY. The Ramsey numbers of trees versus generalized wheels. Graphs Combin., 2019, 351189-193.

[15]

ZhangY, ChenY, ZhangK. The Ramsey numbers for stars of even order versus a wheel of order nine. Eur. J. Combin., 2005, 2971744-1754.

[16]

ZhangY, ChengTCE, ChenY. The Ramsey numbers for stars of odd order versus a wheel of order nine. Discret. Math. Algorithms Appl., 2009, 13413-436.

Funding

National Natural Science Foundation of China(NO. 11931002)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/