PDF
Abstract
For two graphs G and H, the Ramsey number R(G, H) is the smallest integer n such that for any n-vertex graph, either it contains G or its complement contains H. Let \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{n}$$\end{document}
be a star of order n and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,m}$$\end{document}
be a generalised wheel \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K_{s}\vee C_{m}.$$\end{document}
Previous studies by Wang and Chen (Graphs Comb 35(1):189–193, 2019) and Chng et al. (Discret Math 344(8):112440, 2021) imply that a tree is \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,4}$$\end{document}
-good, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,5}$$\end{document}
-good, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,6}$$\end{document}
-good, and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,7}$$\end{document}
-good for \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s\geqslant 2.$$\end{document}
In this paper, we study the Ramsey numbers \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R(S_{n}, W_{s,8}),$$\end{document}
and our results indicate that trees are not always \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{s,8}$$\end{document}
-good.
Keywords
Ramsey number
/
Star
/
Generalised wheel
Cite this article
Download citation ▾
Yiran Zhang, Yuejian Peng.
Ramsey Numbers of Stars Versus Generalised Wheels.
Communications on Applied Mathematics and Computation, 2024, 7(4): 1333-1349 DOI:10.1007/s42967-023-00316-3
| [1] |
BaskoroET, SurahmatS, NababanSM, MillerM. On Ramsey numbers for trees versus wheels of five or six vertices. Graphs Combin., 2002, 184717-721.
|
| [2] |
BondyJA. Pancyclic graphs I. J. Combin. Theory Ser. B, 1971, 11180-84.
|
| [3] |
BrandtS, FaudreeR, GoddardW. Weakly pancyclic graphs. J. Graph Theory, 1998, 273141-176.
|
| [4] |
BurrSA. Ramsey numbers involving graphs with long suspended paths. J. Lond. Math. Soc., 1981, 243405-413.
|
| [5] |
ChenY, ZhangY, ZhangK. The Ramsey numbers of stars versus wheels. Eur. J. Combin., 2004, 2571067-1075.
|
| [6] |
ChngZ, TanT, WongK. On the Ramsey numbers for the tree graphs versus certain generalised wheel graphs. Discret. Math., 2021, 3448. 112440
|
| [7] |
DiracGA. Some theorems on abstract graphs. Proc. Lond. Math. Soc., 1952, 2: 69-81.
|
| [8] |
Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdős. In: Combinatorial Theory and Its Applications, II (Proc. Colloq., Balatonfured, 1969), pp. 601–623 (1970)
|
| [9] |
Hasmawati, E.: Bilangan Ramsey: untuk kombinasi Graf Bintang terhadap Graf Roda. Tesis Magister, Departemen Matematika ITB, Indonesia (2004)
|
| [10] |
HasmawatiE, BaskoroT, AssiyatunH. Star-wheel Ramsey numbers. J. Comb. Math. Combin. Comput., 2005, 55: 123-128
|
| [11] |
LiB, SchiermeyerI. On star-wheel Ramsey numbers. Graphs Combin., 2016, 322733-739.
|
| [12] |
LinQ, LiY, DongL. Ramsey goodness and generalized stars. Eur. J. Combin., 2010, 3151228-1234.
|
| [13] |
Surahmat, S., Baskoro, E.T.: On the Ramsey number of a path or a star versus W4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_4$$\end{document} or W5\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_5$$\end{document}. In: Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia), July 14–17, pp. 174–178 (2001)
|
| [14] |
WangL, ChenY. The Ramsey numbers of trees versus generalized wheels. Graphs Combin., 2019, 351189-193.
|
| [15] |
ZhangY, ChenY, ZhangK. The Ramsey numbers for stars of even order versus a wheel of order nine. Eur. J. Combin., 2005, 2971744-1754.
|
| [16] |
ZhangY, ChengTCE, ChenY. The Ramsey numbers for stars of odd order versus a wheel of order nine. Discret. Math. Algorithms Appl., 2009, 13413-436.
|
Funding
National Natural Science Foundation of China(NO. 11931002)
RIGHTS & PERMISSIONS
Shanghai University