Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem

Lu-Xin Wang , Qin-Qin Shen , Yang Cao

Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1308 -1332.

PDF
Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1308 -1332. DOI: 10.1007/s42967-023-00311-8
Original Paper

Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem

Author information +
History +
PDF

Abstract

In this paper, the modulus-based matrix splitting (MMS) iteration method is extended to solve the horizontal quasi-complementarity problem (HQCP), which is characterized by the presence of two system matrices and two nonlinear functions. Based on the specific matrix splitting of the system matrices, a series of MMS relaxation iteration methods are presented. Convergence analyses of the MMS iteration method are carefully studied when the system matrices are positive definite matrices and

H+
-matrices, respectively. Finally, two numerical examples are given to illustrate the efficiency of the proposed MMS iteration methods.

Keywords

Horizontal quasi-complementarity problem (HQCP) / Modulus-based method / Matrix splitting / Convergence

Cite this article

Download citation ▾
Lu-Xin Wang, Qin-Qin Shen, Yang Cao. Modulus-Based Matrix Splitting Iteration Method for Horizontal Quasi-complementarity Problem. Communications on Applied Mathematics and Computation, 2023, 7(4): 1308-1332 DOI:10.1007/s42967-023-00311-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaiZ-Z. A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms, 1997, 14: 295-319

[2]

BaiZ-Z. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl., 1999, 21: 67-78

[3]

BaiZ-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2010, 17: 917-933

[4]

BaiZ-Z, BucciniA, HayamiK, ReichelL, YinJ-F, ZhengN. Modulus-based iterative methods for constrained Tikhonov regularization. J. Comput. Appl. Math., 2017, 319: 1-13

[5]

BaiZ-Z, GolubGH, NgMK. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 2003, 24: 603-626

[6]

BaiZ-Z, PanJ-YMatrix Analysis and Computations, 2021PhiladelphiaSIAM

[7]

BaiZ-Z, YangX. On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer. Math., 2009, 59: 2923-2936

[8]

BaiZ-Z, YinJ-F, SuY-F. A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math., 2006, 24: 539-552

[9]

BaiZ-Z, ZhangL-L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms, 2013, 62: 59-77

[10]

BaiZ-Z, ZhangL-L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl., 2013, 20: 425-439

[11]

BaiZ-Z, ZhangL-L. Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl., 2017, 24e2105

[12]

BermanA, PlemmonsRJNonnegative Matrices in the Mathematical Sciences, 1994PhiladelphiaSIAM

[13]

CaoY, DuJ, NiuQ. Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math., 2014, 272: 239-250

[14]

CaoY, WangA. Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems. Numer. Algorithms, 2019, 82: 1377-1394

[15]

ChenF, ZhuY, MuratovaGV. Two-step modulus-based matrix splitting iteration methods for retinex problem. Numer. Algorithms, 2021, 88: 1989-2005

[16]

CottleRW, PangJS, StoneREThe Linear Complementarity Problem, 2009PhiladelphiaSIAM

[17]

CvetkovićL, KostićV, ŠancaE. A wider convergence area for the MSTMAOR iteration methods for LCP. Numer. Algorithms, 2016, 71: 77-88

[18]

DongJ-L, JiangM-Q. A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl., 2009, 16: 129-143

[19]

FerrisMC, PangJS. Engineering and economic applications of complementarity problems. SIAM Rev., 1997, 39: 669-713

[20]

FrommerA, SzyldDB. H-splittings and two-stage iterative methods. Numer. Math., 1992, 63: 345-356

[21]

HeJ, ZhengH, VongS. Modulus-based matrix splitting iteration methods with new splitting scheme for horizontal implicit complementarity problems. Linear Multilinear A, 2022.

[22]

HeJ, ZhengH, VongS. Fast modulus-based matrix splitting iteration methods for implicit complementarity problems. Appl. Numer. Math., 2022, 182: 28-41

[23]

HongJ-T, LiC-L. Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl., 2016, 23: 629-641

[24]

HornR, JohnsonCMatrix Analysis, 20132CambridgeCambridge University Press

[25]

HuJ-G. Estimates of ‖B-1A‖∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Vert B^{-1}A\Vert _{\infty }$$\end{document} and their applications (in Chinese). Math. Numer. Sin., 1982, 3: 272-282

[26]

LiR, YinJ-F. On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with H+\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H_+$$\end{document}-matrices. J. Comput. Appl. Math., 2018, 342: 202-209

[27]

LiZ-Z, ZhangH, Ou-YangL. The selection of the optimal parameter in the modulus based matrix splitting algorithm for linear complementarity problems. Comput. Optim. Appl., 2021, 80: 617-638

[28]

LiaoS-W, ZhangG-F, LiangZ-Z. A preconditioned general modulus-based matrix splitting iteration method for solving horizontal linear complementarity problems. Numer. Algorithms, 2023, 93: 919-947

[29]

MezzadriF, GalliganiE. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algorithms, 2020, 83: 201-219

[30]

MezzadriF, GalliganiE. Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems. Numer. Algorithms, 2021, 87: 667-687

[31]

NoorMA. The quasi-complementarity problem. J. Math. Anal. Appl., 1988, 130: 344-353

[32]

NoorMA. Fixed point approach for complementarity problems. J. Math. Anal. Appl., 1988, 133: 437-448

[33]

SchäferU. On the modulus algorithm for the linear complementarity problem. Oper. Res. Lett., 2004, 32: 350-354

[34]

ShiQ, ShenQ-Q, TangT-P. A class of two-step modulus-based matrix splitting iteration methods for quasi-complementarity problems. Comput. Appl. Math., 2020, 39: 11

[35]

SunL, HuangY-M. A modulus-based multigrid method for image retinex. Appl. Numer. Math., 2021, 164: 199-210

[36]

VargaRSMatrix Iterative Analysis, 2000HeidelbergSpringer

[37]

WangA, CaoY, ShiQ. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems. J. Inequal. Appl., 2018, 2018: 2

[38]

WuS-L, GuoP. Modulus-based matrix splitting algorithms for quasi-complementarity problems. Appl. Numer. Math., 2018, 132: 127-137

[39]

ZhanW-P, ZhouS-Z, ZenJ-P. Iterative methods for a kind of quasi-complementarity problems. Acta Math. Appl. Sin., 2000, 23: 551-556

[40]

ZhangL-L. Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms, 2011, 57: 83-99

[41]

ZhangL-L, RenZ-R. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett., 2013, 26: 638-642

[42]

ZhengH, VongS. A modified modulus-based matrix splitting iteration method for solving implicit complementarity problems. Numer. Algorithms, 2019, 82: 573-592

[43]

ZhengH, VongS. A two-step modulus-based matrix splitting iteration method for horizontal linear complementarity problems. Numer. Algorithms, 2021, 86: 1791-1810

[44]

ZhengH, VongS, LiuL. The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems. Int. J. Comput. Math., 2019, 96: 1648-1667

[45]

ZhengN, YinJ-F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms, 2013, 64: 245-262

[46]

ZhouC-C, QiuJ, CaoY, YangG-C, ShenQ-Q, ShiQ. An accelerated modulus-based matrix splitting iteration method for mixed-size cell circuits legalization. Integr. VLSI J., 2023, 88: 20-31

[47]

ZhouC-C, ShenQ-Q, YangG-C, ShiQ. A general modulus-based matrix splitting method for quasi-complementarity problem. AIMS Math., 2022, 7: 10994-11014

Funding

National Natural Science Foundation of China(11771225)

Qinglan Project of Jiangsu Province of China

Science and Technology Project of Nantong City(JC2021198)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/