Reflected Stochastic Burgers Equation with Jumps

Hongchao Qian , Jun Peng , Ruizhi Li , Yewei Gui

Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1282 -1307.

PDF
Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1282 -1307. DOI: 10.1007/s42967-023-00305-6
Original Paper

Reflected Stochastic Burgers Equation with Jumps

Author information +
History +
PDF

Abstract

This paper is concerned with the reflected stochastic Burgers equation driven both by the Brownian motion and by the Poisson random measure. The existence and uniqueness of solutions are established. The penalization method plays an important role.

Keywords

Stochastic Burgers equation / Reflection / Penalization / Jumps / Mathematical Sciences / Statistics

Cite this article

Download citation ▾
Hongchao Qian, Jun Peng, Ruizhi Li, Yewei Gui. Reflected Stochastic Burgers Equation with Jumps. Communications on Applied Mathematics and Computation, 2023, 7(4): 1282-1307 DOI:10.1007/s42967-023-00305-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbeverioS, WuJL, ZhangTS. Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl., 1998, 74: 21-36.

[2]

AssaadO, TudorC. Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathématiques, 2021, 170. 102995

[3]

BertiniL, CancriniN, Jona-LasinioG. The stochastic Burgers equation. Commun. Math. Phys., 1994, 1652211-232.

[4]

BurgersJThe Nonlinear Diffusion Equation, 1974DordrechtSpringer.

[5]

Da PratoG, DebusscheA, TemanR. Stochastic Burgers equation. Nonlinear Differ. Equ. Appl., 1994, 1: 389-402.

[6]

DalangR, MuellerC, ZambottiL. Hitting properties of parabolic SPDE’s with reflection. Ann. Probab., 2006, 3441423-1450.

[7]

DebbiL, DozziM. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl., 2005, 115: 1764-1781.

[8]

Donati-MartinC, PardouxE. White noise driven SPDEs with reflection. Probab. Theory Relat. Fields, 1993, 9511-24.

[9]

DongZ. On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab., 2008, 21: 322-335.

[10]

DongZ, XuT. One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal., 2007, 234: 631-678.

[11]

DuanJ, PengJ. White noise driven SPDEs with oblique reflection: existence and uniqueness. J. Math. Anal. Appl., 2019, 4801. 123356

[12]

EssakyE, OuknineY. Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. Stoch. Anal. Appl., 2004, 221307-336.

[13]

FournierN. Malliavin calculus for parabolic SPDEs with jumps. Stoch. Process. Appl., 2000, 871115-147.

[14]

FuG, HorstU, QiuJ. Maximum principle for quasi-linear reflected backward SPDEs. J. Math. Anal. Appl., 2017, 456: 307-336.

[15]

GyöngyI. Existence and uniqueness results for similinear stochastic partial differential equations. Stoch. Process. Appl., 1988, 73: 271-299.

[16]

GyöngyI, NualartD. On the stochastic Burgers equation in the real line. Ann. Probab., 1999, 27: 782-802.

[17]

HopfE. The partial differential equation ut+uux=μuxx\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u_t+uu_x=\mu u_{xx}$$\end{document}. Comm. Pure Appl. Math., 1950, 3: 201-230.

[18]

MenaldiJ. Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J., 1983, 325733-744.

[19]

MenaldiJ, RobinM. Reflected diffusion processes with jumps. Ann. Probab., 1985, 132319-341.

[20]

MytnikL. Stochastic partial differential equations driven by stable noise. Probab. Theory Related Fields, 2002, 1232157-201.

[21]

NualartD, PardouxE. White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields, 1992, 93177-89.

[22]

Truman, A., Wu, J.: Stochastic Burgers equation with Lévy space-time white noise. In: Davies, I.M., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds) Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, pp. 298-323. World Sci. Publishing, River Edge, NJ (2003)

[23]

WuJ, XieB. On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb{R}}^d$$\end{document}. Bulletin des Sciences Mathématiques, 2012, 1365484-506.

[24]

ZambottiL. A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal., 2001, 1801195-209.

[25]

ZhangT. Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl., 2010, 332137-151

[26]

ZhangT. White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal., 2011, 12161356-1372

[27]

ZhangT. Stochastic Burgers type equations with reflection: existence, uniqueness. J. Diff. Equat., 2019, 26784537-4571.

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/