Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations

Huaijun Yang

Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1264 -1281.

PDF
Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1264 -1281. DOI: 10.1007/s42967-023-00301-w
Original Paper

Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations

Author information +
History +
PDF

Abstract

In this paper, a linearized energy-stable scalar auxiliary variable (SAV) Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained without any certain time-step restrictions. The key to the analysis is to derive the boundedness of the numerical solution in the

H1
-norm, which is different from the temporal-spatial error splitting approach used in the previous literature. Meanwhile, numerical results are provided to confirm the theoretical findings.

Keywords

Unconditionally superconvergence error estimate / Nonlinear wave equation / Linearized energy-stable scalar auxiliary variable (SAV) Galerkin scheme

Cite this article

Download citation ▾
Huaijun Yang. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations. Communications on Applied Mathematics and Computation, 2023, 7(4): 1264-1281 DOI:10.1007/s42967-023-00301-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AchouriT, KadriT, OmraniK. Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. Comput. Math. Appl., 2021, 82: 74-96.

[2]

AdamsR, FournierJSobolev Spaces, 2003AmsterdamAcademic Press

[3]

AkrivisGD, DougalisVA, KarakashianOA. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math., 1991, 59: 31-53.

[4]

AnR. Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation. J. Sci. Comput., 2016, 69: 1-27.

[5]

BakerGA. Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal., 1976, 13: 564-576.

[6]

CaoWX, LiDF, ZhangZM. Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations, Commun. Comput. Phys., 2017, 21: 211-236.

[7]

CaoWX, LiDF, ZhangZM. Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear wave equations. Sci. China Math., 2021, 64: 1-18

[8]

ChenL, ChenY. Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput., 2011, 49: 383-401.

[9]

Dodd, R.K., Eilbeck, I.C., Morris, J.D., Gibbon, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London, New York (1982)

[10]

EggerH, RaduB. Super-convergence and post-processing for mixed finite element approximations of the wave equation. Numer. Math., 2018, 140: 427-447.

[11]

FurihataD. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math., 2001, 1341/237-57.

[12]

GaoHD. Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal., 2014, 52: 2574-2593.

[13]

GarciaM. Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differential Equations, 1994, 10: 129-149.

[14]

GarciaM. Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differential Equations, 1994, 10: 149-169.

[15]

GaoHD, QiuWF. Error analysis of mixed finite element methods for nonlinear parabolic equations. J. Sci. Comput., 2018, 77: 1660-1678.

[16]

GroteMJ, SchneebeliA, SchotzauD. Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal., 2006, 4462408-2431.

[17]

HeywoodJG, RannacherR. Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal., 1990, 27: 353-384.

[18]

KimD, ParkE, SeoB. Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc., 2014, 51: 267-288.

[19]

LiBY, GaoHD, SunWW. Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal., 2014, 53: 933-954.

[20]

LiBY, SunWW. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model., 2013, 10: 622-633

[21]

Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal. 51, 1959–1977 (2013)

[22]

LiDF, WangJL. Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput., 2017, 72: 892-915.

[23]

LiDF, WangJL, ZhangJW. Unconditionally convergent L1-Galerkin FEMs for nonlinear time fractional Schrödinger equations. SIAM. SIAM. J. Sci. Comput., 2017, 39: A3067-A3088.

[24]

LiDF, ZhangJ, ZhangZ. Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput., 2018, 76: 848-866.

[25]

LinQ, LinJFFinite Element Methods: Accuracy and Improvement, 2006BeijingScience Press

[26]

PaniAK, SinhaRK, OttaAK. An H1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^1$$\end{document}-Galerkin mixed methods for second order hyperbolic equations. Int. J. Numer. Anal. Model., 2004, 12111-129

[27]

ShenJ, XuJ. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal., 2018, 56: 2895-2912.

[28]

ShiDY, WangJJ. Unconditional Superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput., 2017, 72: 1093-1118.

[29]

ShiDY, WangPL, ZhaoYM. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett., 2014, 38: 129-134.

[30]

ShiDY, YangHJ. Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations. Adv. Comput. Math., 2019, 45: 3173-3194.

[31]

TalhaA. Conservative finite difference scheme for the nonlinear fourth-order wave equation. Appl. Math. Comput., 2019, 359: 121-131

[32]

TourignyY. Optimal H1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H^1$$\end{document} estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal., 1991, 11: 509-523.

[33]

ThomeeVGalerkin Finite Element Methods for Parabolic Problems, 2006Berlin, HeidelbergSpringer-Verlag

[34]

WangJL. A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput., 2014, 602390-407.

[35]

WangKY, ChenYP. Two-grid mixed finite element method for nonlinear hyperbolic equations. Comput. Math. Appl., 2017, 7461489-1505.

[36]

WangKY, WangQS. Expanded mixed finite element method for second order hyperbolic equations. Comput. Math. Appl., 2019, 7882560-2574.

[37]

WazwazAM. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations. Commun. Nonlinear Sci. Numer. Simul., 2008, 13: 889-901.

[38]

WuL, AllenM. A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numer. Methods Partial Differential Equations, 1999, 15: 317-332.

[39]

XuC, PeiLF. Unconditional superconvergence analysis of two modified finite element fully discrete schemes for nonlinear Burgers’ equation. Appl. Numer. Math., 2023, 185: 1-17.

Funding

National Natural Science Foundation of China(12101568)

RIGHTS & PERMISSIONS

Shanghai University

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/