On the Stability of IMEX Upwind gSBP Schemes for 1D Linear Advection-Diffusion Equations

Sigrun Ortleb

Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1195 -1224.

PDF
Communications on Applied Mathematics and Computation ›› 2023, Vol. 7 ›› Issue (4) : 1195 -1224. DOI: 10.1007/s42967-023-00296-4
Original Paper

On the Stability of IMEX Upwind gSBP Schemes for 1D Linear Advection-Diffusion Equations

Author information +
History +
PDF

Abstract

A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts  (upwind gSBP) schemes in space and implicit-explicit Runge-Kutta  (IMEX-RK) schemes in time. Hereby, advection terms are discretized explicitly, while diffusion terms are solved implicitly. In this context, specific combinations of space and time discretizations enjoy enhanced stability properties. In fact, if the first- and second-derivative upwind gSBP operators fulfill a compatibility condition, the allowable time step size is independent of grid refinement, although the advective terms are discretized explicitly. In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin  (DG) schemes on a global level. While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay  (BR1) scheme for diffusion does not allow for grid-independent stable time steps, the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping. Furthermore, unlike previous discrete energy stability investigations for DG schemes, the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space, since no finite-element-type inverse constants are involved. Numerical experiments are provided confirming these theoretical findings.

Keywords

Upwind SBP schemes / Implicit-explicit (IMEX) / Advection-diffusion / Energy stability

Cite this article

Download citation ▾
Sigrun Ortleb. On the Stability of IMEX Upwind gSBP Schemes for 1D Linear Advection-Diffusion Equations. Communications on Applied Mathematics and Computation, 2023, 7(4): 1195-1224 DOI:10.1007/s42967-023-00296-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AllaneauY, JamesonA. Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng., 2011, 200493628-3636.

[2]

ArnoldD. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 1982, 19: 742-760.

[3]

ArnoldD, BrezziF, CockburnB, MariniL. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 2002, 39: 1749-1779.

[4]

AscherUM, RuuthSJ, SpiteriRJ. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 1997, 252151-167.

[5]

AscherUM, RuuthSJ, WettonB. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 1995, 323797-823.

[6]

BassiF, RebayS. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 1997, 131: 267-279.

[7]

BassiF, RebaySCockburnB, KarniadakisGE, ShuC-W. GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. Discontinuous Galerkin Methods, 2000Berlin, HeidelbergSpringer197-208.

[8]

BaumannCE, OdenJT. A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng., 1999, 175: 311-341.

[9]

CalvoMP, FrutosJ, NovoJ. Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math., 2001, 374535-549.

[10]

CarpenterMH, GottliebD, AbarbanelS. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys., 1994, 1112220-236.

[11]

CockburnB, ShuC-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 3562440-2463.

[12]

CockburnB, ShuC-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 2001, 16: 173-261.

[13]

FisherT, CarpenterM, NordströmJ, YamaleevN, SwansonR. Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys., 2013, 234: 353-375.

[14]

FuG, ShuC-W. Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection-diffusion problems. Int. J. Numer. Anal. Model., 2017, 14: 477-499

[15]

GassnerGJ. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput., 2013, 35: 1233-1253.

[16]

GassnerGJ. A kinetic energy preserving nodal discontinuous Galerkin spectral element method. Int. J. Numer. Meth. Fluids, 2014, 76: 28-50.

[17]

GassnerGJ, WintersAR, HindenlangFJ, KoprivaDA. The BR1 scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput., 2018, 77: 154-200.

[18]

HickenJE, Rey Fernández DelDC, ZinggDW. Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput., 2016, 3841935-1958.

[19]

KreissH-O, SchererGBoorCD. Finite element and finite difference methods for hyperbolic partial differential equations. Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974New YorkAcademic Press195-212.

[20]

LeerB, LoM, GitikR, NomuraSWangZJ. A venerable family of discontinuous Galerkin schemes for diffusion revisited. Adaptive High-Order Methods in Computational Fluid Dynamics, 2011SingaporeWorld Scientific185-201.

[21]

Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference. AIAA-2005-5108 (2005)

[22]

LundgrenL, MattssonK. An efficient finite difference method for the shallow water equations. J. Comput. Phys., 2020, 422. 109784

[23]

MattssonK. Diagonal-norm upwind SBP operators. J. Comput. Phys., 2017, 335: 283-310.

[24]

NordströmJ, ForsbergK, AdamssonC, EliassonP. Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math., 2003, 45: 453-473.

[25]

NordströmJ, GongJ, WeideE, SvärdM. A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys., 2009, 228249020-9035.

[26]

OrtlebS. A kinetic energy preserving DG scheme based on Gauss-Legendre points. J. Sci. Comput., 2017, 71: 1135-1168.

[27]

OrtlebS. L2-stability analysis of IMEX-(σ,μ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\sigma ,\mu )$$\end{document}DG schemes for linear advection-diffusion equations. Appl. Numer. Math., 2020, 147: 43-65.

[28]

RanochaH, ÖffnerP, SonarT. Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys., 2016, 311: 299-328.

[29]

Rey Fernández DelDC, BoomPD, CarpenterMH, ZinggDW. Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates. J. Sci. Comput., 2019, 8041957-1996.

[30]

Del Rey FernándezDC, BoomPD, ZinggDW. A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys., 2014, 266: 214-239.

[31]

Del Rey FernándezDC, HickenJ, ZinggDW. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids, 2014, 95: 171-196.

[32]

RosalesRR, SeiboldB, ShirokoffD, ZhouD. Unconditional stability for multistep ImEx schemes: theory. SIAM J. Numer. Anal., 2017, 5552336-2360.

[33]

SeiboldB, ShirokoffD, ZhouD. Unconditional stability for multistep ImEx schemes: practice. J. Comput. Phys., 2019, 376: 295-321.

[34]

StiernströmV, LundgrenL, NazarovM, MattssonK. A residual-based artificial viscosity finite difference method for scalar conservation laws. J. Comput. Phys., 2021, 430. 110100

[35]

StrandB. Summation by parts for finite difference approximations for ddx\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\frac{\rm d}{{\rm d}x}$$\end{document}. J. Comput. Phys., 1994, 110147-67.

[36]

SvärdM, NordströmJ. Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys., 2014, 268: 17-38.

[37]

VerwerJG, BlomJG, HundsdorferW. An implicit-explicit approach for atmospheric transport-chemistry problems. Appl. Numer. Math., 1996, 201191-209.

[38]

WangH, ShuC-W, ZhangQ. Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal., 2015, 531206-227.

[39]

WangH, ShuC-W, ZhangQ. Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput., 2016, 272: 237-258

[40]

WangH, WangS, ZhangQ, ShuC-W. Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: M2AN, 2016, 5041083-1105.

[41]

WangH, ZhangQ. The direct discontinuous Galerkin methods with implicit-explicit Runge-Kutta time marching for linear convection-difusion problems. Commun. Appl. Math. Comput., 2022, 4: 271-292.

Funding

Universität Kassel (3154)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/