A System of Hamilton-Jacobi Equations Characterizing Geodesic Centroidal Tessellations

Fabio Camilli , Adriano Festa

Communications on Applied Mathematics and Computation ›› : 1 -26.

PDF
Communications on Applied Mathematics and Computation ›› :1 -26. DOI: 10.1007/s42967-023-00276-8
Original Paper

A System of Hamilton-Jacobi Equations Characterizing Geodesic Centroidal Tessellations

Author information +
History +
PDF

Abstract

We introduce a class of systems of Hamilton-Jacobi equations characterizing geodesic centroidal tessellations, i.e., tessellations of domains with respect to geodesic distances where generators and centroids coincide. Typical examples are given by geodesic centroidal Voronoi tessellations and geodesic centroidal power diagrams. An appropriate version of the Fast Marching method on unstructured grids allows computing the solution of the Hamilton-Jacobi system and, therefore, the associated tessellations. We propose various numerical examples to illustrate the features of the technique.

Cite this article

Download citation ▾
Fabio Camilli, Adriano Festa. A System of Hamilton-Jacobi Equations Characterizing Geodesic Centroidal Tessellations. Communications on Applied Mathematics and Computation 1-26 DOI:10.1007/s42967-023-00276-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

MIUR(E11G18000350001)

Politecnico di Torino

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/