Global Existence of Smooth Solutions for the One-Dimensional Full Euler System for a Dusty Gas

Geng Lai , Yingchun Shi

Communications on Applied Mathematics and Computation ›› 2022, Vol. 5 ›› Issue (3) : 1235 -1246.

PDF
Communications on Applied Mathematics and Computation ›› 2022, Vol. 5 ›› Issue (3) : 1235 -1246. DOI: 10.1007/s42967-022-00197-y
Original Paper

Global Existence of Smooth Solutions for the One-Dimensional Full Euler System for a Dusty Gas

Author information +
History +
PDF

Abstract

We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data. Using the characteristic decomposition method proposed by Li et al. (Commun Math Phys 267: 1–12, 2006), we derive a group of characteristic decompositions for the system. Using these characteristic decompositions, we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.

Cite this article

Download citation ▾
Geng Lai, Yingchun Shi. Global Existence of Smooth Solutions for the One-Dimensional Full Euler System for a Dusty Gas. Communications on Applied Mathematics and Computation, 2022, 5(3): 1235-1246 DOI:10.1007/s42967-022-00197-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China(12071278)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/