Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations

Yanbo Hu , Xingxing Li

Communications on Applied Mathematics and Computation ›› 2022, Vol. 5 ›› Issue (3) : 1053 -1096.

PDF
Communications on Applied Mathematics and Computation ›› 2022, Vol. 5 ›› Issue (3) : 1053 -1096. DOI: 10.1007/s42967-021-00185-8
Original Paper

Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations

Author information +
History +
PDF

Abstract

This paper concerns the sonic-supersonic structures of the transonic crossflow generated by the steady supersonic flow past an infinite cone of arbitrary cross section. Under the conical assumption, the three-dimensional (3-D) steady Euler equations can be projected onto the unit sphere and the state of fluid can be characterized by the polar and azimuthal angles. Given a segment smooth curve as a conical-sonic line in the polar-azimuthal angle plane, we construct a classical conical-supersonic solution near the curve under some reasonable assumptions. To overcome the difficulty caused by the parabolic degeneracy, we apply the characteristic decomposition technique to transform the Euler equations into a new degenerate hyperbolic system in a partial hodograph plane. The singular terms are isolated from the highly nonlinear complicated system and then can be handled successfully. We establish a smooth local solution to the new system in a suitable weighted metric space and then express the solution in terms of the original variables.

Cite this article

Download citation ▾
Yanbo Hu, Xingxing Li. Conical Sonic-Supersonic Solutions for the 3-D Steady Full Euler Equations. Communications on Applied Mathematics and Computation, 2022, 5(3): 1053-1096 DOI:10.1007/s42967-021-00185-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Natural Science Foundation of Zhejiang Province(LY21A010017)

National Natural Science Foundation of China(12071106)

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/