Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations

Jean-Luc Guermond , Bojan Popov , Laura Saavedra

Communications on Applied Mathematics and Computation ›› 2021, Vol. 5 ›› Issue (2) : 923 -945.

PDF
Communications on Applied Mathematics and Computation ›› 2021, Vol. 5 ›› Issue (2) : 923 -945. DOI: 10.1007/s42967-021-00165-y
Original Paper

Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations

Author information +
History +
PDF

Abstract

An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks.

Cite this article

Download citation ▾
Jean-Luc Guermond, Bojan Popov, Laura Saavedra. Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations. Communications on Applied Mathematics and Computation, 2021, 5(2): 923-945 DOI:10.1007/s42967-021-00165-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

Ministerio de Ciencia, Innovación y Universidades(PGC2018-097565-B-I00)

Lawrence Livermore National Laboratory(Computational R&D in Support of Stockpile Stewardship)

National Science Foundation(DMS-1619892)

Air Force Office of Scientific Research(FA99550-12-0358)

Army Research Office(W911NF-15-1-0517)

Universidad Politécnica de Madrid

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/