A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries

Xucheng Meng , Yaguang Gu , Guanghui Hu

Communications on Applied Mathematics and Computation ›› 2021, Vol. 5 ›› Issue (1) : 315 -342.

PDF
Communications on Applied Mathematics and Computation ›› 2021, Vol. 5 ›› Issue (1) : 315 -342. DOI: 10.1007/s42967-021-00163-0
Original Paper

A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries

Author information +
History +
PDF

Abstract

In Li and Ren (Int. J. Numer. Methods Fluids 70: 742–763, 2012), a high-order k-exact WENO finite volume scheme based on secondary reconstructions was proposed to solve the two-dimensional time-dependent Euler equations in a polygonal domain, in which the high-order numerical accuracy and the oscillations-free property can be achieved. In this paper, the method is extended to solve steady state problems imposed in a curved physical domain. The numerical framework consists of a Newton type finite volume method to linearize the nonlinear governing equations, and a geometrical multigrid method to solve the derived linear system. To achieve high-order non-oscillatory numerical solutions, the classical k-exact reconstruction with $k=3$ and the efficient secondary reconstructions are used to perform the WENO reconstruction for the conservative variables. The non-uniform rational B-splines (NURBS) curve is used to provide an exact or a high-order representation of the curved wall boundary. Furthermore, an enlarged reconstruction patch is constructed for every element of mesh to significantly improve the convergence to steady state. A variety of numerical examples are presented to show the effectiveness and robustness of the proposed method.

Cite this article

Download citation ▾
Xucheng Meng, Yaguang Gu, Guanghui Hu. A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries. Communications on Applied Mathematics and Computation, 2021, 5(1): 315-342 DOI:10.1007/s42967-021-00163-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China (CN)(11922120)

University of Macau(2019-00154-FST)

fdct of the macao s.a.r.(0082/2020/A2)

guangdong science and technology department(2020B1212030001)

BNU-HKBU United International College(R72021112)

scientific research foundation of beijing normal university(28704-111032105)

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/