A Note on Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation

Junhong Tian , Hengfei Ding

Communications on Applied Mathematics and Computation ›› 2021, Vol. 3 ›› Issue (4) : 571 -584.

PDF
Communications on Applied Mathematics and Computation ›› 2021, Vol. 3 ›› Issue (4) : 571 -584. DOI: 10.1007/s42967-021-00139-0
Original Paper

A Note on Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation

Author information +
History +
PDF

Abstract

Recently, Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order ${\mathcal {O}}(\tau ^{2-\alpha } + h^2)$ in Zhang and Ding (Commun. Appl. Math. Comput. 2(1): 57–72, 2020). Unfortunately, they only gave the stability and convergence results for $\alpha \in (0,1) \;\;\mathrm {and} \;\; \beta \in \left[ {\frac{7}{8}+\frac{\root 3 \of {621+48\sqrt{87}}}{24}+\frac{19}{8\root 3 \of {621+48\sqrt{87}}}},2\right]$. In this paper, using a new analysis method, we find that the original difference scheme is unconditionally stable and convergent with order ${\mathcal {O}}(\tau ^{2-\alpha } + h^2)$ for all $\alpha \in (0,1) \;\;\mathrm {and} \;\; \beta \in \left( 1,2\right]$. Finally, some numerical examples are given to verify the correctness of the results.

Cite this article

Download citation ▾
Junhong Tian, Hengfei Ding. A Note on Numerical Algorithm for the Time-Caputo and Space-Riesz Fractional Diffusion Equation. Communications on Applied Mathematics and Computation, 2021, 3(4): 571-584 DOI:10.1007/s42967-021-00139-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China(11961057)

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/