A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation

Wenhui Guan , Xuenian Cao

Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (1) : 41 -59.

PDF
Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (1) : 41 -59. DOI: 10.1007/s42967-020-00080-8
Original Paper

A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation

Author information +
History +
PDF

Abstract

By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation, and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative, the fractional central difference operator to discritize the space Riesz fractional partial derivative, and the classical central difference formula to discretize the advection term, a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation. The stability and the convergence analysis of the numerical method are given. Numerical experiments show that the numerical method is effective.

Cite this article

Download citation ▾
Wenhui Guan, Xuenian Cao. A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation. Communications on Applied Mathematics and Computation, 2020, 3(1): 41-59 DOI:10.1007/s42967-020-00080-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

237

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/