The Spectral Radii of Intersecting Uniform Hypergraphs

Peng-Li Zhang , Xiao-Dong Zhang

Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (2) : 243 -256.

PDF
Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (2) : 243 -256. DOI: 10.1007/s42967-020-00073-7
Original Paper

The Spectral Radii of Intersecting Uniform Hypergraphs

Author information +
History +
PDF

Abstract

The celebrated Erdős–Ko–Rado theorem states that given $n\geqslant 2k,$ every intersecting k-uniform hypergraph G on n vertices has at most $\left( {\begin{array}{c}n-1\\ k-1\end{array}}\right)$ edges. This paper states spectral versions of the Erdős–Ko–Rado theorem: let G be an intersecting k-uniform hypergraph on n vertices with $n\geqslant2k.$ Then, the sharp upper bounds for the spectral radius of $\mathcal {A}_{\alpha }(G)$ and $\mathcal {Q}^{*}(G)$ are presented, where $\mathcal {A}_{\alpha }(G)=\alpha \mathcal {D}(G)+(1-\alpha ) \mathcal {A}(G)$ is a convex linear combination of the degree diagonal tensor $\mathcal {D}(G)$ and the adjacency tensor $\mathcal {A}(G)$ for $0\leqslant \alpha < 1,$ and $\mathcal {Q}^{*}(G)$ is the incidence $\mathcal {Q}$-tensor, respectively. Furthermore, when $n>2k,$ the extremal hypergraphs which attain the sharp upper bounds are characterized. The proof mainly relies on the Perron–Frobenius theorem for nonnegative tensor and the property of the maximizing connected hypergraphs.

Cite this article

Download citation ▾
Peng-Li Zhang, Xiao-Dong Zhang. The Spectral Radii of Intersecting Uniform Hypergraphs. Communications on Applied Mathematics and Computation, 2020, 3(2): 243-256 DOI:10.1007/s42967-020-00073-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China (CN)(11971311)

National Natural Science Foundation of China(11531001)

AI Summary AI Mindmap
PDF

220

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/