Two Structure-Preserving-Doubling Like Algorithms to Solve the Positive Definite Solution of the Equation $X-{A^{\rm{H}}}{\overline{X}}^{-1}A=Q$

Xiao-Xia Guo , Hong-Xiao Wu

Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (1) : 123 -135.

PDF
Communications on Applied Mathematics and Computation ›› 2020, Vol. 3 ›› Issue (1) : 123 -135. DOI: 10.1007/s42967-020-00062-w
Original Paper

Two Structure-Preserving-Doubling Like Algorithms to Solve the Positive Definite Solution of the Equation $X-{A^{\rm{H}}}{\overline{X}}^{-1}A=Q$

Author information +
History +
PDF

Abstract

In this paper, we study the nonlinear matrix equation $X-{A^{\rm{H}}}{\overline{X}}^{-1}A=Q$, where $A,Q \in {{\mathbb {C}}}^{n\times n}$, Q is a Hermitian positive definite matrix and $X \in {{\mathbb {C}}}^{n\times n}$ is an unknown matrix. We prove that the equation always has a unique Hermitian positive definite solution. We present two structure-preserving-doubling like algorithms to find the Hermitian positive definite solution of the equation, and the convergence theories are established. Finally, we show the effectiveness of the algorithms by numerical experiments.

Cite this article

Download citation ▾
Xiao-Xia Guo, Hong-Xiao Wu. Two Structure-Preserving-Doubling Like Algorithms to Solve the Positive Definite Solution of the Equation $X-{A^{\rm{H}}}{\overline{X}}^{-1}A=Q$. Communications on Applied Mathematics and Computation, 2020, 3(1): 123-135 DOI:10.1007/s42967-020-00062-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/