Molecularly Engineered Phosphorus-Based Flame-Retardant Solid Polymer Electrolyte for Solid-State Lithium Batteries

Xueying Wang , Yaxin Xie , Jihai Cai , Rui Shu , Changchun Ai , Lijuan Shi , Huijuan Guo , Shangqing Chen , Qun Yi

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (6) : e70064

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (6) : e70064 DOI: 10.1002/cnl2.70064
RESEARCH ARTICLE

Molecularly Engineered Phosphorus-Based Flame-Retardant Solid Polymer Electrolyte for Solid-State Lithium Batteries

Author information +
History +
PDF

Abstract

Developing solid electrolytes that simultaneously ensure high-safety and electrochemical performance remains a critical challenge for next-generation high-energy-density batteries. Herein, we design a phosphorus-containing ionic liquid (POIL) and fabricate a flame-retardant composite solid electrolyte (PIL-SPEs) via in situ thermal polymerization. The incorporated POIL endows PIL-SPEs with exceptional self-extinguishing properties (< 1 s), and synergizes with the polymer matrix to facilitate Li+ transport and salt dissociation. Consequently, PIL-SPEs achieve a high room-temperature ionic conductivity (3.50 × 10−4 S cm−1) and Li+ transference number (0.60). At 60°C, its conductivity rises to 1.28 × 10−3 S cm−1, coupled with a wide electrochemical stability window (4.7 V vs. Li+/Li). LiFePO4 ||Li full cells employing PIL-SPEs demonstrate excellent cycling stability at 60°C, retaining 76% capacity (108.6 mAh g−1) after 200 cycles. The rational molecular design of POIL and its synergistic effects within the composite matrix provide a viable material strategy for developing safe, high-performance solid-state lithium batteries.

Keywords

flame retardant / phosphorus-based ionic liquid / solid polymer electrolyte / solid-state lithium metal batteries

Cite this article

Download citation ▾
Xueying Wang, Yaxin Xie, Jihai Cai, Rui Shu, Changchun Ai, Lijuan Shi, Huijuan Guo, Shangqing Chen, Qun Yi. Molecularly Engineered Phosphorus-Based Flame-Retardant Solid Polymer Electrolyte for Solid-State Lithium Batteries. Carbon Neutralization, 2025, 4(6): e70064 DOI:10.1002/cnl2.70064

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Li, S. Zhu, S. Gao, et al., “Fireproof Solid Polymer Electrolyte With Chemically Bonded Phosphorus Toward Stable and Safe Lithium-Metal Battery,” Advanced Functional Materials 34, no. 51 (2024): 2409836.

[2]

H. Zhang, H. Xu, Z. Xiao, et al., “Nanowires for Solid-State Lithium Batteries,” Advanced Functional Materials 35, no. 2 (2025): 2412548.

[3]

Y.-X. Song, X.-F. Wang, C.-B. Liu, et al., “A Widely Used Nonionic Surfactant With Desired Functional Groups as Aqueous Electrolyte Additives for Stabilizing Zn Anode,” Rare Metals 43, no. 8 (2024): 3692–3701.

[4]

Q. Wu, Y. Wu, H. Yan, et al., “A Cross-Linked Nanoflower Network and Se-Doping Enabling Sulfur-Rich Span Towards Lithium–Sulfur Batteries Beyond 600 W H Kg− 1,” Energy & Environmental Science 18, no. 10 (2025): 4905–4915.

[5]

M. Wang, X. Liu, B. Qin, et al., “In-Situ Etching and Ion Exchange Induced 2d-2d Mxene@ Co9S8/CoMo2S4 Heterostructure for Superior Na+ Storage,” Chemical Engineering Journal 451 (2023): 138508.

[6]

W. Chen, J. Chen, J. Deng, et al., “Improvement of Cycling Stability of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 Microrods Cathode Material Modified With In Situ Polymerization of Aniline in Htfsi Solution,” International Journal of Energy Research 46, no. 15 (2022): 22960–22970.

[7]

H.-J. Guo, X.-J. Chen, R. Shu, X. B. Zhong, L. X. Zhang, and Y. X. Song, “Ionic Liquid-Integrated Aqueous Electrolyte Regulation on Solvation Chemistry and Electrode Interface for Reversible Dendrite-Free Zinc Anodes,” Journal of Colloid and Interface Science 678 (2025): 627–636.

[8]

A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-State Electrolytes,” Nature Reviews Materials 2, no. 4 (2017): 16103.

[9]

J. Gui, Z. Huang, J. Lu, et al., “High-Safety Lithium Metal Batteries Enabled by Additive of Fire-Extinguishing Microcapsules,” Carbon Neutralization 4, no. 1 (2025): e182.

[10]

H. Liang, L. Wang, A. Wang, et al., “Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review,” Nano-Micro Letters 15, no. 1 (2023): 42.

[11]

H.-J. Guo, R. Shu, Y. Xie, et al., “Intermolecular Chemistry in High-Entropy Solid Polymer Electrolytes Enabling Room Temperature Solid-State Lithium Metal Batteries,” Journal of Materials Chemistry A 13, no. 31 (2025): 25998–26008.

[12]

H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, and X. He, “Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries,” Energy Storage Materials 33 (2020): 188–215.

[13]

F. Pei, L. Wu, Y. Zhang, et al., “Interfacial Self-Healing Polymer Electrolytes for Long-Cycle Solid-State Lithium-Sulfur Batteries,” Nature Communications 15, no. 1 (2024): 351.

[14]

Y. Su, X. Rong, H. Li, et al., “High-Entropy Microdomain Interlocking Polymer Electrolytes for Advanced All-Solid-State Battery Chemistries,” Advanced Materials 35, no. 1 (2023): 2209402.

[15]

Y. Du, X. Liu, L. Chen, et al., “3d Hierarchical Fireproof Gel Polymer Electrolyte Towards High-Performance and Comprehensive Safety Lithium-Ion Batteries,” Chemical Engineering Journal 476 (2023): 146605.

[16]

S. Yang, X. He, T. Hu, et al., “A Supertough, Nonflammable, Biomimetic Gel With Neuron-Like Nanoskeleton for Puncture-Tolerant Safe Lithium Metal Batteries,” Advanced Functional Materials 33, no. 45 (2023): 2304727.

[17]

J. Yang, X. Zhang, M. Hou, et al., “Research Advances in Interface Engineering of Solid-State Lithium Batteries,” Carbon Neutralization 4, no. 1 (2025): e188.

[18]

J. Liu, X. Song, L. Zhou, et al., “Fluorinated Phosphazene Derivative–A Promising Electrolyte Additive for High Voltage Lithium Ion Batteries: From Electrochemical Performance to Corrosion Mechanism,” Nano Energy 46 (2018): 404–414.

[19]

Q.-K. Zhang, X.-Q. Zhang, H. Yuan, and J.-Q. Huang, “Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives,” Small Science 1, no. 10 (2021): 2100058.

[20]

W. Zhao, G. Gao, Y. Hao, L. Liu, W. Fang, and Y. Wu, “Progress and Perspectives of the Covalent Organic Frameworks in Boosting Ions Transportation for High-Energy Density Li Metal Batteries,” Carbon Neutralization 4, no. 4 (2025): e70028.

[21]

H. J. Guo, Y. Sun, Y. Zhao, et al., “Surface Degradation of Single-Crystalline Ni-Rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid-State Lithium Batteries,” Angewandte Chemie International Edition 61 48 (2022): e202211626.

[22]

M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, “Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries,” Nature Energy 1, no. 9 (2016): 16114.

[23]

S. Li, Q. Liu, J. Zhou, et al., “Hierarchical Co3O4 Nanofiber–Carbon Sheet Skeleton With Superior Na/Li-Philic Property Enabling Highly Stable Alkali Metal Batteries,” Advanced Functional Materials 29, no. 19 (2019): 1808847.

[24]

X. Feng, D. Ren, X. He, and M. Ouyang, “Mitigating Thermal Runaway of Lithium-Ion Batteries,” Joule 4, no. 4 (2020): 743–770.

[25]

Y. Li, X. Liu, L. Wang, et al., “Thermal Runaway Mechanism of Lithium-Ion Battery With LiNi0. 8Mn0. 1Co0. 1O2 Cathode Materials,” Nano Energy 85 (2021): 105878.

[26]

J. Zheng, Y. Yang, W. Li, X. Feng, W. Chen, and Y. Zhao, “Novel Flame Retardant Rigid Spirocyclic Biphosphate Based Copolymer Gel Electrolytes for Sodium Ion Batteries With Excellent High-Temperature Performance,” Journal of Materials Chemistry A 8, no. 43 (2020): 22962–22968.

[27]

P. Yan, Y. Zhu, X. Pan, and H. Ji, “A Novel Flame-Retardant Electrolyte Additive for Safer Lithium-Ion Batteries,” International Journal of Energy Research 45, no. 2 (2021): 2776–2784.

[28]

S.-J. Tan, Y.-F. Tian, Y. Zhao, et al., “Noncoordinating Flame-Retardant Functional Electrolyte Solvents for Rechargeable Lithium-Ion Batteries,” Journal of the American Chemical Society 144, no. 40 (2022): 18240–18245.

[29]

J. Feng, Y. Wang, Y. Xu, et al., “Ion Regulation of Ionic Liquid Electrolytes for Supercapacitors,” Energy & Environmental Science 14, no. 5 (2021): 2859–2882.

[30]

X. Liu, A. Mariani, T. Diemant, et al., “Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes,” Advanced Materials 36, no. 1 (2024): 2309062.

[31]

L. Yu, L. Yu, Q. Liu, T. Meng, S. Wang, and X. Hu, “Monolithic Task-Specific Ionogel Electrolyte Membrane Enables High-Performance Solid-State Lithium-Metal Batteries in Wide Temperature Range,” Advanced Functional Materials 32, no. 14 (2022): 2110653.

[32]

W. J. Mun, B. Kim, S. J. Moon, and J. H. Kim, “Multifunctional, Bicontinuous, Flexible Comb Copolymer Electrolyte for Solid-State Supercapacitors,” Chemical Engineering Journal 454 (2023): 140386.

[33]

M. Chen, B. T. White, C. R. Kasprzak, and T. E. Long, “Advances in Phosphonium-Based Ionic Liquids and Poly (Ionic Liquid) S as Conductive Materials,” European Polymer Journal 108 (2018): 28–37.

[34]

Y. Zhang, L. Yu, X.-D. Zhang, et al., “A Smart Risk-Responding Polymer Membrane for Safer Batteries,” Science Advances 9, no. 5 (2023): eade5802.

[35]

S. Lei, Z. Zeng, H. Yan, et al., “Nonpolar Cosolvent Driving Lumo Energy Evolution of Methyl Acetate Electrolyte to Afford Lithium-Ion Batteries Operating at− 60°C,” Advanced Functional Materials 33, no. 34 (2023): 2301028.

[36]

S. He, C. Deng, Z.-Y. Zhao, Z.-X. Chen, and Y.-Z. Wang, “Hyperbranched Polyamide-Amine Based Phosphorous-Containing Flame Retardant for Simultaneous Flame Retardancy and High Performance of Polypropylene,” Composites, Part B: Engineering 250 (2023): 110431.

[37]

C. Wu, Y. Pan, Y. Jiao, and P. Wu, “Α-Methyl Group Reinforced Amphiphilic Poly (Ionic Liquid) Additive for High-Performance Zinc–Iodine Batteries,” Angewandte Chemie 137, no. 21 (2025): e202423326.

[38]

Y. Tang, Y. Xiong, L. Wu, X. Xiong, T. Me, and X. Wang, “A Solid-State Lithium Battery With Pvdf–Hfp-Modified Fireproof Ionogel Polymer Electrolyte,” ACS Applied Energy Materials 6, no. 7 (2023): 4016–4026.

[39]

C. Luo, C. Ning, X. Huang, et al., “Molecular Engineering of Weakly Solvating Dinitrile Electrolytes for Long-Lasting Room-Temperature Lithium Metal Batteries,” Angewandte Chemie 137, no. 29 (2025): e202507051.

[40]

R. Li, F. Lan, L. Tang, et al., “A Local-Dissociation Solid-State Polymer Electrolyte With Enhanced Li+ Transport for High-Performance Dual-Band Electrochromic Smart Windows,” Advanced Functional Materials 35, no. 15 (2025): 2419357.

[41]

W. Min, L. Li, M. Wang, et al., “Mastering the Copolymerization Behavior of Ethyl Cyanoacrylate as Gel Polymer Electrolyte for Lithium-Metal Battery Application,” Angewandte Chemie International Edition 64, no. 13 (2025): e202422510.

[42]

Y. Wang, Z. Chen, Y. Wu, Y. Li, Z. Yue, and M. Chen, “PVDF-HFP/PAN/PDA@ LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries,” ACS Applied Materials & Interfaces 15, no. 17 (2023): 21526–21536.

[43]

X. Chen, L. Liang, W. Hu, H. Liao, and Y. Zhang, “Poss Hybrid Poly (Ionic Liquid) Ionogel Solid Electrolyte for Flexible Lithium Batteries,” Journal of Power Sources 542 (2022): 231766.

[44]

C. R. Piedrahita, P. Yue, J. Cao, et al., “Flexoelectricity in Flexoionic Polymer Electrolyte Membranes: Effect of Thiosiloxane Modification on Poly (Ethylene Glycol) Diacrylate and Ionic Liquid Electrolyte Composites,” ACS Applied Materials & Interfaces 12, no. 14 (2020): 16978–16986.

[45]

X. Song, K. Ma, J. Wang, et al., “Three-Dimensional Metal–Organic Framework@ Cellulose Skeleton-Reinforced Composite Polymer Electrolyte for All-Solid-State Lithium Metal Battery,” ACS Nano 18, no. 19 (2024): 12311–12324.

[46]

X. Chen, S. Qiu, Z. Jian, et al., “Designing a Self-Extinguishing System in a Composite Electrolyte for Highly Safe Solid-State Lithium Metal Batteries,” ACS Nano 19, no. 20 (2025): 19297–19309.

[47]

B. Yang, Y. Pan, T. Li, et al., “High-Safety Lithium Metal Pouch Cells for Extreme Abuse Conditions by Implementing Flame-Retardant Perfluorinated Gel Polymer Electrolytes,” Energy Storage Materials 65 (2024): 103124.

[48]

H. Yu, S. Wang, Y. Zhang, et al., “Phosphorus Flame Retardant In Situ Fixed on a Gel Polymer Electrolyte for Lithium Metal Batteries With Enhanced Safety and Superior Electrochemical Performance,” Journal of Materials Chemistry A 12, no. 42 (2024): 29129–29137.

[49]

W. Tang, T. Zhou, Y. Duan, M. Zhou, Z. Li, and R. Liu, “Nonflammable In Situ Pdol-Based Gel Polymer Electrolyte for High-Energy-Density and High Safety Lithium Metal Batteries,” Carbon Neutralization 3, no. 3 (2024): 386–395.

[50]

H. Wang, J. Song, K. Zhang, et al., “A Strongly Complexed Solid Polymer Electrolyte Enables a Stable Solid-State High-Voltage Lithium Metal Battery,” Energy & Environmental Science 15, no. 12 (2022): 5149–5158.

[51]

Y. Li, B. Wei, J. Yu, and D. Chen, “Multiple Na+ Transport Pathways and Interfacial Compatibility Enable High-Capacity, Room-Temperature Quasi-Solid Sodium Batteries,” Journal of Colloid and Interface Science 666 (2024): 447–456.

[52]

S. Ye, Y. Zhang, Y. Huang, et al., “Regulating Ion Transport Through Direct Coordination in Composite Gel Polymer Electrolytes Toward High-Voltage and High-Loading Quasi-Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 64 (2025): e202506662.

[53]

J. Qiu, X. Liu, R. Chen, et al., “Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries With Peo-Based Solid Electrolyte,” Advanced Functional Materials 30, no. 22 (2020): 1909392.

[54]

M. Liu, J. Vatamanu, X. Chen, L. Xing, K. Xu, and W. Li, “Hydrolysis of Lipf6-Containing Electrolyte at High Voltage,” ACS Energy Letters 6, no. 6 (2021): 2096–2102.

[55]

Z. Jiang, H. Liu, L. Fu, et al., “Anion Immobilization From Quasi-Icosahedron to Cubo-Octahedron Enhances the Lithium-Ion Transference Number in Solid-State Electrolytes,” ACS Nano 19 (2025): 21143–21153.

[56]

X. Yu, Y. Liu, J. B. Goodenough, and A. Manthiram, “Rationally Designed Pegda–LLZTO Composite Electrolyte for Solid-State Lithium Batteries,” ACS Applied Materials & Interfaces 13, no. 26 (2021): 30703–30711.

[57]

T. Yang, J. Lou, L. Hu, et al., “In Situ Construction of LiF/Li3N/LiXGa Hybrid Sei to Boost Long-Lifespan Succinonitrile-Based Solid-State Lithium Metal Batteries,” Advanced Functional Materials 35, no. 28 (2025): 2423719.

[58]

L.-Q. Wu, Z. Li, H. Li, et al., “Regulating Amine Substitution in Fluorosulfonyl-Based Flame-Retardant Electrolytes for Energy-Dense Lithium Metal Batteries,” Journal of the American Chemical Society 147, no. 19 (2025): 16506–16521.

[59]

Y. Hou, Y. Wang, Z. Wei, et al., “A Solid Polymer Electrolyte With Inorganic-Enriched Cathode Electrolyte Interphases Enabling 5.1 V Solid-State Lithium-Ion Batteries,” Angewandte Chemie International Edition 64, no. 29 (2025): e202505147.

[60]

H. Lim, M. S. Chae, H. Jamal, et al., “Triple-Layered Noncombustible PEO-Based Solid Electrolyte for Highly Safe Lithium-Metal Batteries,” Small (Weinheim an der Bergstrasse, Germany) 21, no. 14 (2025): 2406200.

[61]

H. Zeng, K. Yu, J. Li, et al., “Beyond Lif: Tailoring Li2o-Dominated Solid Electrolyte Interphase for Stable Lithium Metal Batteries,” ACS Nano 18, no. 3 (2024): 1969–1981.

[62]

S. Zhang, Q. Li, J. Gao, et al., “Melt-Infusion-Induced Electrolyte Surface Coating Stabilized Sulfide-Based All-Solid-State Lithium Metal Batteries,” ACS Nano 19, no. 11 (2025): 10912–10921.

[63]

Z. Gao, Q. Tan, L. Zhu, et al., “A Fully Flame-Retardant Electrolyte With Laminated Sei for Exceptionally Safe, Long-Life, and High-Voltage Lithium Metal Batteries,” Small 21, no. 22 (2025): 2500971.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/