Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells

Tao Dong , Chenxu Shen , Boyang Yu , Shengyang Zhao , Haoyu Wu , Chenyuan Ding , Binkai Shi , Ziyu Cai , Wenzheng Hu , Biyun Shi , Feng Ye , Qiufeng Ye , Zebo Fang

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (6) : e70061

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (6) : e70061 DOI: 10.1002/cnl2.70061
RESEARCH ARTICLE

Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells

Author information +
History +
PDF

Abstract

As an intermediate composition between CsPbI2Br and CsPbIBr2, the inorganic perovskite material CsPbI1.5Br1.5 is expected to exhibit both high efficiency and enhanced stability, attracting significant attention. However, as a Br-rich perovskite, CsPbI1.5Br1.5 suffers from poor film quality, primarily due to the substantial disparity in solvent evaporation rates and nucleation growth kinetics of the precursor films. This leads to severe non-radiative recombination, closely related to the larger open-circuit voltage loss (VOC loss) and lower efficiencies compared to mainstream inorganic perovskites (e.g., CsPbI3 and CsPbI2Br). To address these issues, we employed a Sequential Extraction Vacuum Method (SEVM), which integrates antisolvent extraction with vacuum treatment, to minimize solvent residues in perovskite films. This approach promotes grain densification, mitigates pinhole formation, and enhances film coverage, thereby significantly inhibiting non-radiative recombination. Following SEVM treatment, the champion device achieved a power conversion efficiency (PCE) of 14.29% and a VOC of 1.336 V, representing the highest PCE and smallest VOC loss for ultra-wide bandgap (> 1.95 eV) inorganic perovskite solar cells (PSCs). Furthermore, the SEVM-based PSCs retained 90% of their initial PCE after 500 h of unencapsulated storage.

Keywords

CsPbI1.5Br1.5 / film quality / high efficiency / sequential extraction vacuum method / solvent residues

Cite this article

Download citation ▾
Tao Dong, Chenxu Shen, Boyang Yu, Shengyang Zhao, Haoyu Wu, Chenyuan Ding, Binkai Shi, Ziyu Cai, Wenzheng Hu, Biyun Shi, Feng Ye, Qiufeng Ye, Zebo Fang. Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells. Carbon Neutralization, 2025, 4(6): e70061 DOI:10.1002/cnl2.70061

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society 131, no. 17 (2009): 6050–6051.

[2]

Q. Jiang, L. Zhang, H. Wang, et al., “Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells,” Nature Energy 2, no. 1 (2016): 16177.

[3]

N. G. Park, M. Grätzel, T. Miyasaka, K. Zhu, and K. Emery, “Towards Stable and Commercially Available Perovskite Solar Cells,” Nature Energy 1, no. 11 (2016): 16152.

[4]

H. Tan, A. Jain, O. Voznyy, et al., “Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation,” Science 355, no. 6326 (2017): 722–726.

[5]

Y. Rong, Y. Hu, A. Mei, et al., “Challenges for Commercializing Perovskite Solar Cells,” Science 361, no. 6408 (2018): eaat8235.

[6]

Q. Jiang, Y. Zhao, X. Zhang, et al., “Surface Passivation of Perovskite Film for Efficient Solar Cells,” Nature Photonics 13, no. 7 (2019): 460–466.

[7]

J. Luo, J. Xia, H. Yang, et al., “A Pressure Process for Efficient and Stable Perovskite Solar Cells,” Nano Energy 77 (2020): 105063.

[8]

Y. Zhao, F. Ma, Z. Qu, et al., “Inactive (PbI2)2RbCl Stabilizes Perovskite Films for Efficient Solar Cells,” Science 377, no. 6605 (2022): 531–534.

[9]

Y. Lei, Y. Li, and Z. Jin, “Photon Energy Loss and Management in Perovskite Solar Cells,” Energy Reviews 1, no. 1 (2022): 100003.

[10]

J. Lin, M. Lai, L. Dou, et al., “Thermochromic Halide Perovskite Solar Cells,” Nature Materials 17, no. 3 (2018): 261–267.

[11]

Y. Wang, M. I. Dar, L. K. Ono, et al., “Thermodynamically Stabilized β-CsPbI3–Based Perovskite Solar Cells With Efficiencies ≫18%,” Science 365, no. 6453 (2019): 591–595.

[12]

Z. Zhang, D. Chen, W. Zhu, et al., “Slow Halide Exchange in CsPbIBr2 Films for High-Efficiency, Carbon-Based, All-Inorganic Perovskite Solar Cells,” Science China Materials 64, no. 9 (2021): 2107–2117.

[13]

H. Wang, S. Cao, B. Yang, et al., “NH4Cl-Modified ZnO for High-Performance CsPbIBr2 Perovskite Solar Cells Via Low-Temperature Process,” Solar Rrl 4, no. 1 (2020): 1900363.

[14]

Z. Liu, B. Sun, X. Liu, et al., “Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material,” Nano-Micro Letters 10 (2018): 34.

[15]

J. Tian, Q. Xue, X. Tang, et al., “Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells With Improved Photostability,” Advanced Materials 31, no. 23 (2019): 1901152.

[16]

K. Jiang, J. Wang, F. Wu, et al., “Dopant-Free Organic Hole-Transporting Material for Efficient and Stable Inverted All-Inorganic and Hybrid Perovskite Solar Cells,” Advanced Materials 32, no. 16 (2020): 1908011.

[17]

W. Xu, F. He, M. Zhang, et al., “Minimizing Voltage Loss in Efficient All-Inorganic CsPbI2Br Perovskite Solar Cells Through Energy Level Alignment,” ACS Energy Letters 4, no. 10 (2019): 2491–2499.

[18]

W. S. Subhani, K. Wang, M. Du, X. Wang, and S. Liu, “Interface-Modification-Induced Gradient Energy Band for Highly Efficient CsPbIBr2 Perovskite Solar Cells,” Advanced Energy Materials 9, no. 21 (2019): 1803785.

[19]

W. Zhu, Q. Zhang, D. Chen, et al., “Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells to over 9%,” Advanced Energy Materials 8, no. 30 (2018): 1802080.

[20]

W. Zhu, Z. Zhang, D. Chen, et al., “Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells With Photovoltage Exceeding 1.33 V,” Nano-Micro Letters 12 (2020): 87.

[21]

Q. Ye, W. Hu, Y. Wei, et al., “Constructing a Surface Multi-Cationic Heterojunction for CsPbI1.5Br1.5 Perovskite Solar Cells With Efficiency Beyond 14%,” The Journal of Physical Chemistry Letters 14, no. 5 (2023): 1140–1147.

[22]

W. Zhang, J. Xiong, J. Li, and W. A. Daoud, “Organic Dye Passivation for High-Performance All-Inorganic CsPbI1.5Br1.5 Perovskite Solar Cells With Efficiency Over 14%,” Advanced Energy Materials 11, no. 5 (2021): 2003585.

[23]

S. Sanchez, N. Christoph, B. Grobety, et al., “Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared Annealing,” Advanced Energy Materials 8, no. 30 (2018): 1802060.

[24]

H. Wang, H. Liu, Z. Dong, et al., “Dimethyl Sulfoxide: A Promising Solvent for Inorganic CsPbI3 Perovskite,” Science Bulletin 68, no. 2 (2023): 192–202.

[25]

Q. Ma, S. Huang, X. Wen, M. A. Green, and A. W. Y. Ho-Baillie, “Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation,” Advanced Energy Materials 6, no. 7 (2016): 1502202.

[26]

H. Wang, J. Sun, Y. Gu, et al., “Solvent-Engineering-Processed CsPbIBr2 Inorganic Perovskite Solar Cells With Efficiency of ∼11%,” Solar Energy Materials and Solar Cells 238 (2022): 111640.

[27]

W. Li, M. U. Rothmann, A. Liu, et al., “Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells,” Advanced Energy Materials 7, no. 20 (2017): 1700946.

[28]

W. Zhu, W. Chai, Z. Zhang, et al., “Interfacial TiO2 Atomic Layer Deposition Triggers Simultaneous Crystallization Control and Band Alignment for Efficient CsPbIBr2 Perovskite Solar Cell,” Organic Electronics 74 (2019): 103–109.

[29]

X. Liu, J. Li, Z. Liu, et al., “Vapor-Assisted Deposition of CsPbIBr2 Films for Highly Efficient and Stable Carbon-Based Planar Perovskite Solar Cells With Superior Voc,” Electrochimica Acta 330 (2020): 135266.

[30]

W. Zhu, W. Chai, D. Chen, et al., “Recycling of FTO/TiO2 Substrates: Route Toward Simultaneously High-Performance and Cost-Efficient Carbon-Based, All-Inorganic CsPbIBr2 Solar Cells,” ACS Applied Materials & Interfaces 12, no. 4 (2020): 4549–4557.

[31]

Y. Guo, X. Yin, J. Liu, S. Wen, Y. Wu, and W. Que, “Inorganic CsPbIBr2-Based Perovskite Solar Cells: Fabrication Technique Modification and Efficiency Improvement,” Solar Rrl 3, no. 9 (2019): 1900135.

[32]

W. Li, J. Fan, J. Li, Y. Mai, and L. Wang, “Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly Toward Efficient Solar Cell Exceeding 17%,” Journal of the American Chemical Society 137, no. 32 (2015): 10399–10405.

[33]

W. Zhang, J. Xiong, L. Jiang, et al., “Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells With Interface Passivation,” ACS Applied Materials & Interfaces 9, no. 44 (2017): 38467–38476.

[34]

H. Taherianfard, G. W. Kim, M. M. Byranvand, et al., “Effective Management of Nucleation and Crystallization Processes in Perovskite Formation Via Facile Control of Antisolvent Temperature,” ACS Applied Energy Materials 3, no. 2 (2020): 1506–1514.

[35]

X. Wang, Z. Han, F. Gao, C. Luo, and Q. Zhao, “Facet Orientation and Intermediate Phase Regulation via a Green Antisolvent for High-Performance Perovskite Solar Cells,” Solar Rrl 6, no. 4 (2022): 2100973.

[36]

C. Dong, X. Han, Y. Zhao, J. Li, L. Chang, and W. Zhao, “A Green Anti-Solvent Process for High Performance Carbon-Based CsPbI2Br All-Inorganic Perovskite Solar Cell,” Solar RRL 2, no. 9 (2018): 1800139.

[37]

J. Sun, F. Li, J. Yuan, and W. Ma, “Advances in Metal Halide Perovskite Film Preparation: The Role of Anti-Solvent Treatment,” Small Methods 5, no. 5 (2021): 2100046.

[38]

A. D. Taylor, Q. Sun, K. P. Goetz, et al., “A General Approach to High-Efficiency Perovskite Solar Cells by Any Antisolvent,” Nature Communications 12, no. 1 (2021): 1878.

[39]

W. J. Su, X. Han, J. Feng, et al., “Suppressing the Defects in CsPbI2Br Perovskite Photovoltaic Films Via a Homogeneous Cap-Mediated Annealing Strategy,” Energy & Fuels 35, no. 14 (2021): 11488–11495.

[40]

J. Huang, S. He, W. Zhang, et al., “Efficient and Stable All-Inorganic CsPbIBr2 Perovskite Solar Cells Enabled by Dynamic Vacuum-Assisted Low-Temperature Engineering,” Solar RRL 6, no. 4 (2022): 2100839.

[41]

Z. Jiang, F. Ren, Q. Zhou, et al., “Solvent Engineering for Scalable Fabrication of High-Quality Formamidinium Cesium-Based Perovskite Films Toward Highly Efficient and Stable Solar Modules,” Advanced Energy Materials 15 (2025): 2500598.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/