Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4

Shikai Wang , Qinghua Liu , Wei Zhang , Junchang Liu , Xueyang Ji , Peiqing Cai , Ruiqi Chen , Siyu Liu , Wenqing Ma , Dafeng Zhang , Xipeng Pu

Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70054

PDF
Carbon Neutralization ›› 2025, Vol. 4 ›› Issue (5) : e70054 DOI: 10.1002/cnl2.70054
RESEARCH ARTICLE

Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4

Author information +
History +
PDF

Abstract

Step-scheme (S-scheme) heterojunctions offer significant potential for enhancing photocatalytic hydrogen evolution (PHE) by promoting charge separation while preserving high redox capabilities. Herein, theoretical calculations predict that constructing a ZnMoO4@ZnIn2S4 S-scheme (ZMO@ZIS) heterojunction significantly lowers the Gibbs free energy for H2 evolution compared to the individual monomers, indicating a thermodynamically and kinetically favored pathway. Guided by this prediction, we synthesized the ZMO@ZIS heterojunction by in situ anchoring ZnIn2S4 nanosheets onto ZnMoO4 hexagonal platform, with the expectation of achieving excellent photocatalytic H2 evolution performance. This unique trans-scale assembly strategy spontaneously organizes ZIS into a hierarchical porous network, markedly increasing the surface area and providing abundant accessible active sites and efficient mass transfer channels. Comprehensive experimental characterization combined with detailed theoretical simulation provides compelling evidence confirming the S-scheme electron transfer mechanism and establishment of an internal electric field, where high-potential electrons in ZIS and holes in ZMO are retained for PHE. Consequently, the ZMO@ZIS-13 S-scheme heterojunction achieves an exceptional visible-light PHE rate of 5.045 mmol g−1 h−1 under visible light, representing a 10.7-fold improvement compared to that of pure ZnIn2S4. This study demonstrates the efficacy of theory-guided design and trans-scale assembly for creating efficient S-scheme photocatalysts with optimized charge dynamics.

Keywords

density functional theory / photocatalytic hydrogen evolution / S-scheme heterojunction / ZnIn2S4 / ZnMoO4

Cite this article

Download citation ▾
Shikai Wang, Qinghua Liu, Wei Zhang, Junchang Liu, Xueyang Ji, Peiqing Cai, Ruiqi Chen, Siyu Liu, Wenqing Ma, Dafeng Zhang, Xipeng Pu. Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4. Carbon Neutralization, 2025, 4(5): e70054 DOI:10.1002/cnl2.70054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. He and Y. Zhao, “Covalent Organic Frameworks for Energy Conversion in Photocatalysis,” Angewandte Chemie International Edition 62 (2023): e202303086.

[2]

J. Ding, X. Guan, J. Lv, et al., “Three-Dimensional Covalent Organic Frameworks With Ultra-Large Pores for Highly Efficient Photocatalysis,” Journal of the American Chemical Society 145 (2023): 3248–3254.

[3]

F. Wu, F. Li, Y. Tian, et al., “Surface Topographical Engineering of Chiral Au Nanocrystals With Chiral Hot Spots for Plasmon-Enhanced Chiral Discrimination,” Nano Letters 23 (2023): 8233–8240.

[4]

L. Liccardo, M. Bordin, P. M. Sheverdyaeva, et al., “Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis,” Advanced Functional Materials 33 (2023): 2212486.

[5]

P. Zhou, I. A. Navid, Y. Ma, et al., “Solar-to-Hydrogen Efficiency of More Than 9% in Photocatalytic Water Splitting,” Nature 613 (2023): 66–70.

[6]

C. Bie, L. Wang, and J. Yu, “Challenges for Photocatalytic Overall Water Splitting,” Chem 8 (2022): 1567–1574.

[7]

J. Liu, J. Rong, D. P. Wood, Y. Wang, S. H. Liang, and S. Lin, “Co-Catalyzed Hydrofluorination of Alkenes: Photocatalytic Method Development and Electroanalytical Mechanistic Investigation,” Journal of the American Chemical Society 146 (2024): 4380–4392.

[8]

K. Song, H. Liu, B. Chen, et al., “Toward Efficient Utilization of Photogenerated Charge Carriers in Photoelectrochemical Systems: Engineering Strategies From the Atomic Level to Configuration,” Chemical Reviews 124 (2024): 13660–13680.

[9]

J. Zhao, Z. Chen, S. Liu, et al., “Nano-Bio Interactions Between 2D Nanomaterials and Mononuclear Phagocyte System Cells,” BMEMat 2 (2024): e12066.

[10]

W. Ma, M. Gao, J. Ma, et al., “Transition Metal-Based Cathode Catalysts for Li-CO2 Batteries,” Journal of Energy Chemistry 104 (2025): 225–253.

[11]

H. Hou, C. R. Bowen, D. Yang, and W. Yang, “Cation-Exchange-Upgraded Nanostructures for Photocatalysts,” Chem 10 (2024): 800–831.

[12]

Q. Zhang, H. Gu, X. Wang, et al., “Robust Hollow Tubular ZnIn2S4 Modified With Embedded Metal-Organic-Framework-Layers: Extraordinarily High Photocatalytic Hydrogen Evolution Activity Under Simulated and Real Sunlight Irradiation,” Applied Catalysis B 298 (2021): 120632.

[13]

Y. Xiao, M. Li, H. Li, Z. Wang, and Y. Wang, “Multi-Channel Charge Transfer in Self-Supporting B-g-C3Nx/Bi2S3/CdS Dual S-scheme Heterojunction Toward Enhanced Photothermal-Photocatalytic Performance,” Nano Energy 120 (2024): 109164.

[14]

Y. Kang, H. Qi, G. Wan, et al., “Ferroelectric Polarization Enabled Spatially Selective Adsorption of Redox Mediators to Promote Z-Scheme Photocatalytic Overall Water Splitting,” Joule 6 (2022): 1876–1886.

[15]

L. Zhang, J. Zhang, H. Yu, and J. Yu, “Emerging S-Scheme Photocatalyst,” Advanced Materials 34(2022): 2107668.

[16]

W. Ma, J. Hou, S. Liu, et al., “Transforming Cu Into Cu2O/RuAl Intermetallic Heterojunction for Lowering the Thermodynamic Energy Barrier of the CO2 Reduction and Evolution Reactions in Li-CO2 Battery,” Journal of Energy Chemistry 98 (2024): 531–540.

[17]

S. Shen, K. Yang, G. Xu, S. Chen, C. Ortiz-Ledón, and J. Duan, “Advancements and Challenges of Industrial-Level Acidic CO2 electrolysis,” MetalMat 1 (2024): e28.

[18]

B. Chen, S. Sui, F. He, et al., “Interfacial Engineering of Transition Metal Dichalcogenide/Carbon Heterostructures for Electrochemical Energy Applications,” Chemical Society Reviews 52 (2023): 7802–7847.

[19]

H.-T. Vuong, D.-V. Nguyen, L. P. Phuong, P. P. D. Minh, B. N. Ho, and H. A. Nguyen, “Nitrogen-Rich Graphitic Carbon Nitride (g-C3N5): Emerging Low-Bandgap Materials for Photocatalysis,” Carbon Neutralization 2 (2023): 425–457.

[20]

B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, and N. Zhao, “Preparation of MoS2/TiO2 based Nanocomposites for Photocatalysis and Rechargeable Batteries: Progress, Challenges, and Perspective,” Nanoscale 10 (2018): 34–68.

[21]

X. Sun, L. Li, S. Jin, et al., “Interface Boosted Highly Efficient Selective Photooxidation in Bi3O4Br/Bi2O3 Heterojunctions,” eScience 3 (2023): 100095.

[22]

C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, and J. Yu, “Verifying the Charge-Transfer Mechanism in S-Scheme Heterojunctions Using Femtosecond Transient Absorption Spectroscopy,” Angewandte Chemie International Edition 62(2023): e202218688.

[23]

Y. Ding, S. Maitra, S. Halder, et al., “Emerging Semiconductors and Metal-Organic-Compounds-Related Photocatalysts for Sustainable Hydrogen Peroxide Production,” Matter 5 (2022): 2119–2167.

[24]

B. Xia, B. He, J. Zhang, et al., “TiO2/FePS3 S-Scheme Heterojunction for Greatly Raised Photocatalytic Hydrogen Evolution,” Advanced Energy Materials 12 (2022): 2201449.

[25]

H. Liao, Y. Zhou, Z. Chen, et al., “Harnessing the Synergistic Power of Ce2S3/TiO2S-Scheme Heterojunctions for Profound C–O Bond Cleavage in Lignin Model Compounds,” ACS Catalysis 14 (2024): 5539–5549.

[26]

P. J. Mafa, B. Ntsendwana, B. B. Mamba, and A. T. Kuvarega, “Visible Light Driven ZnMoO4/BiFeWO6/rGO Z-Scheme Photocatalyst for the Degradation of Anthraquinonic Dye,” Journal of Physical Chemistry C 123 (2019): 20605–20616.

[27]

S. Wang, Z. Ai, X. Niu, et al., “Linker Engineering of Sandwich-Structured Metal-Organic Framework Composites for Optimized Photocatalytic H2 Production,” Advanced Materials 35 (2023): 2302512.

[28]

M. Mousavi, S. Moradian, P. Pourhakkak, et al., “Fabrication of S-Scheme Heterojunction g-C3N4-Nanosheet/ZnMoO4 Nanocomposite With High Efficiency in Photocatalytic N2 Fixation and Cr(VI) Detoxification,” Journal of Materials Science 57 (2022): 9145.

[29]

Q. Xi, F. Xie, J. Liu, et al., “In Situ Formation ZnIn2S4/Mo2TiC2 Schottky Junction for Accelerating Photocatalytic Hydrogen Evolution Kinetics: Manipulation of Local Coordination and Electronic Structure,” Small 19 (2023): 2300717.

[30]

F. Xue, C. Zhang, H. Peng, et al., “Modulating Charge Centers and Vacancies in P-Coni Loaded Phosphorus-Doped ZnIn2S4 Nanosheets for H2 and H2O2 Photosynthesis From Pure Water,” Nano Energy 117 (2023): 108902.

[31]

K. Natarajan, S. Dave, H. C. Bajaj, and R. J. Tayade, “Enhanced Photocatalytic Degradation of Nitrobenzene Using MWCNT/β-ZnMoO4 Composites Under UV Light Emitting Diodes (LEDs),” Materials Today Chemistry 17 (2020): 100331.

[32]

S. Wang, D. Zhang, D. Zhang, et al., “A Novel Hydrangea-Like ZnIn2S4/FePO4 S-Scheme Heterojunction via Internal Electric Field for Boosted Photocatalytic H2 Evolution,” Journal of Alloys and Compounds 967 (2023): 171862.

[33]

B. Sun, D. Xu, Z. Wang, Y. Zhan, and K. Zhang, “Interfacial Structure Design for Triboelectric Nanogenerators,” Battery Energy 1 (2022): 20220001.

[34]

L. Yanan, Z. Xiaoli, W. Lei, and G. Yanling, “Preparation and Hydrogen Evolution Properties of ZnIn2S4/g-C3N4/MoS2 Ternary Heterojunctions,” Journal of Liaocheng University (Natural Science Edition) 36(2023): 57.

[35]

M. Wang, Z. Song, J. Bi, et al., “Probing Interfacial Electrochemistry by In Situ Atomic Force Microscope for Battery Characterization,” Battery Energy 2 (2023): 20230006.

[36]

S. Wang, B. Y. Guan, and X. W. D. Lou, “Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction,” Journal of the American Chemical Society 140 (2018): 5037–5040.

[37]

S. Wang, D. Zhang, P. Su, et al., “In-Situ Preparation of Mossy Tile-Like ZnIn2S4/Cu2MoS4 S-Scheme Heterojunction for Efficient Photocatalytic H2 Evolution Under Visible Light,” Journal of Colloid and Interface Science 650 (2023): 825–835.

[38]

S. Wang, D. Zhang, X. Pu, L. Zhang, D. Zhang, and J. Jiang, “Photothermal-Enhanced S-Scheme Heterojunction of Hollow Core–Shell FeNi2S4@ZnIn2S4 Toward Photocatalytic Hydrogen Evolution,” Small 20 (2024): 2311504.

[39]

S. Wang, B. Y. Guan, X. Wang, and X. W. D. Lou, “Formation of Hierarchical Co9S8@ZnIn2S4 Heterostructured Cages as an Efficient Photocatalyst for Hydrogen Evolution,” Journal of the American Chemical Society 140 (2018): 15145–15148.

[40]

C. Du, B. Yan, and G. Yang, “Promoting Photocatalytic Hydrogen Evolution by Introducing Hot Islands: SnSe Nanoparticles on ZnIn2S4 Monolayer,” Chemical Engineering Journal 404 (2021): 126477.

[41]

Z. Guan, J. Pan, Q. Li, G. Li, and J. Yang, “Boosting Visible-Light Photocatalytic Hydrogen Evolution With an Efficient CuInS2/ZnIn2S4 2D/2D Heterojunction,” ACS Sustainable Chemistry & Engineering 7 (2019): 7736–7742.

[42]

Z. Li, X. Wang, W. Tian, A. Meng, and L. Yang, “CoNi Bimetal Cocatalyst Modifying a Hierarchical ZnIn2S4 Nanosheet-Based Microsphere Noble-Metal-Free Photocatalyst for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production,” ACS Sustainable Chemistry & Engineering 7 (2019): 20190–20201.

[43]

X. Peng, L. Ye, Y. Ding, L. Yi, C. Zhang, and Z. Wen, “Nanohybrid Photocatalysts With ZnIn2S4 Nanosheets Encapsulated UiO-66 Octahedral Nanoparticles for Visible-Light-Driven Hydrogen Generation,” Applied Catalysis B 260 (2020): 118152.

[44]

Y. Xiao, Z. Peng, W. Zhang, Y. Jiang, and L. Ni, “Self-Assembly of Ag2O Quantum Dots on the Surface of ZnIn2S4 Nanosheets to Fabricate p-n Heterojunctions With Wonderful Bifunctional Photocatalytic Performance,” Applied Surface Science 494 (2019): 519–531.

[45]

D. Zeng, Z. Lu, X. Gao, B. Wu, and W. J. Ong, “Hierarchical Flower-Like ZnIn2S4 Anchored With Well-Dispersed Ni12P5 nanoparticles for High-Quantum-Yield Photocatalytic H2 Evolution Under Visible Light,” Catalysis Science & Technology 9 (2019): 4010–4016.

[46]

X. Wang, X. Wang, J. Huang, S. Li, A. Meng, and Z. Li, “Interfacial Chemical Bond and Internal Electric Field Modulated Z-Scheme Sv-ZnIn2S4/MoSe2 Photocatalyst for Efficient Hydrogen Evolution,” Nature Communications 12 (2021): 4112.

[47]

H. Liu, J. Zhang, and D. Ao, “Construction of Heterostructured ZnIn2S4@NH2-MIL-125(Ti) Nanocomposites for Visible-Light-Driven H2 Production,” Applied Catalysis, B: Environmental 221 (2018): 433–442.

[48]

X. Xiong, A. Yan, X. Zhang, et al., “ReS2/ZnIn2S4 Heterojunctions With Enhanced Visible-Light-Driven Hydrogen Evolution Performance for Water Splitting,” Journal of Alloys and Compounds 873 (2021): 159850.

[49]

X. Su, S. Wang, J. Liu, D. Zhang, X. Pu, and P. Cai, “S-Scheme Heterojunction of Hollow Corncob-Like ZnIn2S4/LaFeO3 for Water Splitting and Tetracycline Degradation,” Chemosphere 340 (2023): 139777.

[50]

B. Wang, Y. Ding, Z. Deng, and Z. Li, “Rational Design of Ternary NiS/CQDs/ZnIn2S4 Nanocomposites as Efficient Noble-Metal-Free Photocatalyst for Hydrogen Evolution Under Visible Light,” Chinese Journal of Catalysis 40 (2019): 335–342.

[51]

S. Wang, X. Su, W. Han, et al., “A Novel Recoverable 1D Core-Shell Cotton fiber@ZnIn2S4 Composite With Improved Photoactivity for H2 Evolution Under Visible Light,” International Journal of Hydrogen Energy 48 (2023): 21712–21722.

[52]

Q. Yang, Y. Jiang, H. Zhuo, E. M. Mitchell, and Q. Yu, “Recent Progress of Metal Single-Atom Catalysts for Energy Applications,” Nano Energy 111 (2023): 108404.

[53]

J. Jizhou, L. Fangyi, X. Zhiguo, W. Haitao, and Z. Jing, “Two-Dimensional Modified Carbon-Based Materials for Efficient Photocatalytic Hydrogen Production,” Journal of Liaocheng University (Natural Science Edition) 36, (2023): 73.

[54]

J. Zhu, Q. Bi, Y. Tao, et al., “Mo-Modified ZnIn2S4@NiTiO3 S-Scheme Heterojunction With Enhanced Interfacial Electric Field for Efficient Visible-Light-Driven Hydrogen Evolution,” Advanced Functional Materials 33(2023): 2213131.

[55]

T. Nicacio, A. Santiago, M. Castro, et al., “Effects of Neodymium Doping on the Photoluminescent and Photocatalytic Properties of β-ZnMoO4,” Ceramics International 51 (2025): 16277.

[56]

X. Yu, R. Wang, Z. Liu, et al., “Construction of ZnMoO4/Cu2O With Z-type Heterojunction and Its Photocatalytic Degradation Performance,” Ceramics International 51 (2025): 78883.

[57]

C. Tang, R. Xiong, K. Li, Y. Xiao, B. Cheng, and S. Lei, “Spatially Distributed Z-Scheme Heterojunction of g-C3N4/SnIn4S8 for Enhanced Photocatalytic Hydrogen Production and Pollutant Degradation,” Applied Surface Science 598 (2022): 153870.

[58]

D. Zhang, M. Zhu, R. Qin, et al., “Rational Construction of CuFe2O4@C/Cd0.9Zn0.1S S-Scheme Heterojunction Photocatalyst for Extraordinary Photothermal-Assisted Photocatalytic H2 Evolution,” Journal of Energy Chemistry 92 (2024): 240–249.

[59]

J. Niu, L. Wang, X. Meng, and C. Li, “Preparation of Mo-Zn0.5Cd0.5S@NiCo2S4 Doped-Heterojunction System and Its Bifunctional Photocatalytic Performance,” Journal of Liaocheng University (Natural Science Edition) 37 (2024): 36.

[60]

X. Yao, X. Jiang, D. Zhang, et al., “Achieving Improved Full-Spectrum Responsive 0D/3D CuWO4/BiOBr:Yb3+, Er3+ Photocatalyst With Synergetic Effects of Up-Conversion, Photothermal Effect and Direct Z-Scheme Heterojunction,” Journal of Colloid and Interface Science 644 (2023): 95–106.

[61]

Y. Xiao, B. Yao, M. Cao, and Y. Wang, “Super-Photothermal Effect-Mediated Fast Reaction Kinetic in S-Scheme Organic/Inorganic Heterojunction Hollow Spheres Toward Optimized Photocatalytic Performance,” Small 19 (2023): 2207499.

[62]

F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, and G. Zhou, “Vacancy Engineering Mediated Hollow Structured Zno/Zns S-Scheme Heterojunction for Highly Efficient Photocatalytic H2 Production,” Chinese Journal of Catalysis 64 (2024): 152–165.

[63]

B. Zhang, B. Sun, F. Liu, T. Gao, and G. Zhou, “TiO2-based S-Scheme Photocatalysts for Solar Energy Conversion and Environmental Remediation,” Science China Materials 67 (2024): 424–443.

[64]

B. Zhang, F. Liu, B. Sun, T. Gao, and G. Zhou, “Hierarchical S-Scheme Heterojunctions of ZnIn2S4-Decorated TiO2 for Enhancing Photocatalytic H2 Evolution,” Chinese Journal of Catalysis 59 (2024): 334–345.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Neutralization published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/